Most cited article - PubMed ID 15691006
Differential expression of Ixodes ricinus tick genes induced by blood feeding or Borrelia burgdorferi infection
Ticks are obligate hematophagous arthropods that transmit a wide range of pathogens to humans as well as wild and domestic animals. They also harbor a non-pathogenic microbiota, although our previous study has shown that the diverse bacterial microbiome in the midgut of Ixodes ricinus is quantitatively poor and lacks a core. In artificial infections by capillary feeding of ticks with two model bacteria (Gram-positive Micrococcus luteus and Gram-negative Pantoea sp.), rapid clearance of these microbes from the midgut was observed, indicating the presence of active immune mechanisms in this organ. In the current study, RNA-seq analysis was performed on the midgut of I. ricinus females inoculated with either M. luteus or Pantoea sp. or with sterile water as a control. While no immune-related transcripts were upregulated by microbial inoculation compared to that of the sterile control, capillary feeding itself triggered dramatic transcriptional changes in the tick midgut. Manual curation of the transcriptome from the midgut of unfed I. ricinus females, complemented by the proteomic analysis, revealed the presence of several constitutively expressed putative antimicrobial peptides (AMPs) that are independent of microbial stimulation and are referred to here as 'guard' AMPs. These included two types of midgut-specific defensins, two different domesticated amidase effector 2 (Dae2), microplusin/ricinusin-related molecules, two lysozymes, and two gamma interferon-inducible lysosomal thiol reductases (GILTs). The in vitro antimicrobial activity assays of two synthetic mature defensins, defensin 1 and defensin 8, confirmed their specificity against Gram-positive bacteria showing exceptional potency to inhibit the growth of M. luteus at nanomolar concentrations. The antimicrobial activity of midgut defensins is likely part of a multicomponent system responsible for the rapid clearance of bacteria in the tick midgut. Further studies are needed to evaluate the role of other identified 'guard' AMPs in controlling microorganisms entering the tick midgut.
- Keywords
- Ixodes, Micrococcus luteus, antimicrobial peptide, defensin, immune system, midgut microbiome, tick,
- MeSH
- Antimicrobial Peptides metabolism MeSH
- Gastrointestinal Tract microbiology immunology MeSH
- Ixodes * microbiology immunology MeSH
- Micrococcus luteus immunology MeSH
- Proteomics MeSH
- Gene Expression Profiling MeSH
- Transcriptome MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antimicrobial Peptides MeSH
Lyme borreliosis is an emerging tick-borne disease caused by spirochetes Borrelia burgdorferi sensu lato. In Europe, Lyme borreliosis is predominantly caused by Borrelia afzelii and transmitted by Ixodes ricinus. Although Borrelia behavior throughout tick development is quite well documented, specific molecular interactions between Borrelia and the tick have not been satisfactorily examined. Here, we present the first transcriptomic study focused on the expression of tick midgut genes regulated by Borrelia. By using massive analysis of cDNA ends (MACE), we searched for tick transcripts expressed differentially in the midgut of unfed, 24h-fed, and fully fed I. ricinus nymphs infected with B. afzelii. In total, we identified 553 upregulated and 530 downregulated tick genes and demonstrated that B. afzelii interacts intensively with the tick. Technical and biological validations confirmed the accuracy of the transcriptome. The expression of five validated tick genes was silenced by RNA interference. Silencing of the uncharacterized protein (GXP_Contig_30818) delayed the infection progress and decreased infection prevalence in the target mice tissues. Silencing of other genes did not significantly affect tick feeding nor the transmission of B. afzelii, suggesting a possible role of these genes rather in Borrelia acquisition or persistence in ticks. Identification of genes and proteins exploited by Borrelia during transmission and establishment in a tick could help the development of novel preventive strategies for Lyme borreliosis.
- Keywords
- Borrelia afzelii, Ixodes ricinus, RNAi, massive analysis of cDNA ends (MACE), midgut, tick, transcriptome,
- MeSH
- Borrelia burgdorferi Group genetics MeSH
- Ticks genetics microbiology MeSH
- Ixodes genetics MeSH
- Lyme Disease microbiology transmission MeSH
- Mice, Inbred C3H MeSH
- Mice MeSH
- Nymph microbiology MeSH
- Transcriptome genetics MeSH
- Digestive System microbiology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Tick-borne rickettsial diseases are caused by pathogens acquired from hard ticks. In particular, Rickettsia slovaca, a zoonotic infectious bacterium causing tick-borne lymphadenopathy (TIBOLA), is transmitted by the vectors Dermacentor spp. that can be found all over Europe. Although recent studies point out the extreme complexity of bacteria-induced effects in these blood-feeding vectors, the knowledge of individual molecules involved in the preservation and transmission of the pathogen is still limited. System biology tools, including proteomics, may contribute greatly to the understanding of pathogen-tick-host interactions. METHODS: Herein, we performed a comparative proteomics study of the tick vector Dermacentor reticulatus that was experimentally infected with the endosymbiotic bacterium R. slovaca. Rickettsia-free ticks, collected in the southern region of Slovakia, were infected with the bacterium by a capillary tube-feeding system, and the dynamics of infection was assessed by quantitative PCR method after 5, 10, 15 and 27 days. RESULTS: At the stage of controlled proliferation (at 27 dpi), 33 (from 481 profiled) differentially abundant protein spots were detected on a two-dimensional gel. From the aforementioned protein spots, 21 were successfully identified by tandem mass spectrometry. CONCLUSIONS: Although a few discovered proteins were described as having structural or housekeeping functions, the vast majority of the affected proteins were suggested to be essential for tick attachment and feeding on the host, host immune system evasion and defensive response modulation to ensure successful pathogen transmission.
- Keywords
- Bacterial transmission, Blood-feeding, Comparative proteomics, Immune modulation, Protective antigens, TIBOLA, Tick vector,
- MeSH
- Dermacentor genetics microbiology MeSH
- DNA, Bacterial MeSH
- Disease Vectors MeSH
- Tick-Borne Diseases microbiology transmission MeSH
- Polymerase Chain Reaction MeSH
- Proteomics * MeSH
- Rickettsia genetics pathogenicity MeSH
- Rickettsia Infections transmission MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Geographicals
- Slovakia MeSH
- Names of Substances
- DNA, Bacterial MeSH
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases.
- Keywords
- Anaplasma, Babesia, Borrelia, flavivirus, immunology, microbiome, tick, vaccine,
- MeSH
- Arachnid Vectors microbiology parasitology virology MeSH
- Host-Pathogen Interactions * MeSH
- Ticks microbiology parasitology physiology virology MeSH
- Humans MeSH
- Tick-Borne Diseases epidemiology MeSH
- Disease Transmission, Infectious * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
BACKGROUND: Ixodes ricinus is the main tick vector of the microbes that cause Lyme disease and tick-borne encephalitis in Europe. Pathogens transmitted by ticks have to overcome innate immunity barriers present in tick tissues, including midgut, salivary glands epithelia and the hemocoel. Molecularly, invertebrate immunity is initiated when pathogen recognition molecules trigger serum or cellular signalling cascades leading to the production of antimicrobials, pathogen opsonization and phagocytosis. We presently aimed at identifying hemocyte transcripts from semi-engorged female I. ricinus ticks by mass sequencing a hemocyte cDNA library and annotating immune-related transcripts based on their hemocyte abundance as well as their ubiquitous distribution. METHODOLOGY/PRINCIPAL FINDINGS: De novo assembly of 926,596 pyrosequence reads plus 49,328,982 Illumina reads (148 nt length) from a hemocyte library, together with over 189 million Illumina reads from salivary gland and midgut libraries, generated 15,716 extracted coding sequences (CDS); these are displayed in an annotated hyperlinked spreadsheet format. Read mapping allowed the identification and annotation of tissue-enriched transcripts. A total of 327 transcripts were found significantly over expressed in the hemocyte libraries, including those coding for scavenger receptors, antimicrobial peptides, pathogen recognition proteins, proteases and protease inhibitors. Vitellogenin and lipid metabolism transcription enrichment suggests fat body components. We additionally annotated ubiquitously distributed transcripts associated with immune function, including immune-associated signal transduction proteins and transcription factors, including the STAT transcription factor. CONCLUSIONS/SIGNIFICANCE: This is the first systems biology approach to describe the genes expressed in the haemocytes of this neglected disease vector. A total of 2,860 coding sequences were deposited to GenBank, increasing to 27,547 the number so far deposited by our previous transcriptome studies that serves as a discovery platform for studies with I. ricinus biochemistry and physiology.
- MeSH
- Arachnid Vectors genetics microbiology MeSH
- Gene Library MeSH
- Hemocytes cytology MeSH
- Ixodes genetics immunology microbiology MeSH
- Encephalitis, Tick-Borne microbiology MeSH
- Lyme Disease microbiology MeSH
- Molecular Sequence Data MeSH
- Arthropod Proteins genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Salivary Glands cytology MeSH
- Gene Expression Profiling MeSH
- Transcriptome genetics MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- Arthropod Proteins MeSH
Ticks are hematophagous arachnids transmitting a wide variety of pathogens including viruses, bacteria, and protozoans to their vertebrate hosts. The tick vector competence has to be intimately linked to the ability of transmitted pathogens to evade tick defense mechanisms encountered on their route through the tick body comprising midgut, hemolymph, salivary glands or ovaries. Tick innate immunity is, like in other invertebrates, based on an orchestrated action of humoral and cellular immune responses. The direct antimicrobial defense in ticks is accomplished by a variety of small molecules such as defensins, lysozymes or by tick-specific antimicrobial compounds such as microplusin/hebraein or 5.3-kDa family proteins. Phagocytosis of the invading microbes by tick hemocytes is likely mediated by the primordial complement-like system composed of thioester-containing proteins, fibrinogen-related lectins and convertase-like factors. Moreover, an important role in survival of the ingested microbes seems to be played by host proteins and redox balance maintenance in the tick midgut. Here, we summarize recent knowledge about the major components of tick immune system and focus on their interaction with the relevant tick-transmitted pathogens, represented by spirochetes (Borrelia), rickettsiae (Anaplasma), and protozoans (Babesia). Availability of the tick genomic database and feasibility of functional genomics based on RNA interference greatly contribute to the understanding of molecular and cellular interplay at the tick-pathogen interface and may provide new targets for blocking the transmission of tick pathogens.
- Keywords
- Anaplasma, Babesia, Borrelia, antimicrobial peptides, innate immunity, phagocytosis, tick, tick-borne diseases,
- MeSH
- Anaplasma immunology pathogenicity MeSH
- Arachnid Vectors immunology microbiology parasitology MeSH
- Babesia immunology pathogenicity MeSH
- Borrelia immunology pathogenicity MeSH
- Host-Pathogen Interactions * MeSH
- Ticks immunology microbiology parasitology MeSH
- Immunity, Innate * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
BACKGROUND: The immune system of ticks is stimulated to produce many pharmacologically active molecules during feeding and especially during pathogen invasion. The family of cationic peptides - defensins - represents a specific group of antimicrobial compounds with six conserved cysteine residues in a molecule. RESULTS: Two isoforms of the defensin gene (def1 and def2) were identified in the European tick Ixodes ricinus. Expression of both genes was induced in different tick organs by a blood feeding or pathogen injection. We have tested the ability of synthetic peptides def1 and def2 to inhibit the growth or directly kill several pathogens. The antimicrobial activities (expressed as minimal inhibition concentration and minimal bactericidal concentration values) against Gram positive bacteria were confirmed, while Gram negative bacteria, yeast, Tick Borne Encephalitis and West Nile Viruses were shown to be insensitive. In addition to antimicrobial activities, the hemolysis effect of def1 and def2 on human erythrocytes was also established. CONCLUSIONS: Although there is nothing known about the realistic concentration of defensins in I. ricinus tick body, these results suggest that defensins play an important role in defence against different pathogens. Moreover this is a first report of a one amino acid substitution in a defensins molecule and its impact on antimicrobial activity.
- MeSH
- Animal Structures immunology MeSH
- Anti-Infective Agents isolation & purification pharmacology MeSH
- Defensins genetics immunology isolation & purification MeSH
- Erythrocytes drug effects MeSH
- Gram-Negative Bacteria drug effects MeSH
- Gram-Positive Bacteria drug effects MeSH
- Ixodes genetics immunology MeSH
- Yeasts drug effects MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Guinea Pigs MeSH
- Protein Isoforms genetics immunology isolation & purification MeSH
- Gene Expression Profiling MeSH
- Viruses drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Guinea Pigs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Infective Agents MeSH
- Defensins MeSH
- Protein Isoforms MeSH
Ticks are ectoparasitic blood-feeders and important vectors for pathogens including arboviruses, rickettsiae, spirochetes and protozoa. As obligate blood-feeders, one possible strategy to retard disease transmission is disruption of the parasite's ability to digest host proteins. However, the constituent peptidases in the parasite gut and their potential interplay in the digestion of the blood meal are poorly understood. We have characterised a novel asparaginyl endopeptidase (legumain) from the hard tick Ixodes ricinus (termed IrAE), which we believe is the first such characterisation of a clan CD family C13 cysteine peptidase (protease) in arthropods. By RT-PCR of different tissues, IrAE mRNA was only expressed in the tick gut. Indirect immunofluorescence and EM localised IrAE in the digestive vesicles of gut cells and within the peritrophic matrix. IrAE was functionally expressed in Pichia pastoris and reacted with a specific peptidyl fluorogenic substrate, and acyloxymethyl ketone and aza-asparagine Michael acceptor inhibitors. IrAE activity was unstable at pH > or = 6.0 and was shown to have a strict specificity for asparagine at P1 using a positional scanning synthetic combinatorial library. The enzyme hydrolyzed protein substrates with a pH optimum of 4.5, consistent with the pH of gut cell digestive vesicles. Thus, IrAE cleaved the major protein of the blood meal, hemoglobin, to a predominant peptide of 4kDa. Also, IrAE trans-processed and activated the zymogen form of Schistosoma mansoni cathepsin B1 -- an enzyme contributing to hemoglobin digestion in the gut of that bloodfluke. The possible functions of IrAE in the gut digestive processes of I. ricinus are compared with those suggested for other hematophagous parasites.
- MeSH
- Cysteine Endopeptidases chemistry genetics isolation & purification metabolism MeSH
- Fluorescent Antibody Technique, Indirect MeSH
- Phylogeny MeSH
- Hemoglobins metabolism MeSH
- Cathepsin B metabolism MeSH
- Ixodes enzymology genetics MeSH
- Cloning, Molecular MeSH
- RNA, Messenger biosynthesis genetics MeSH
- Molecular Sequence Data MeSH
- Pichia genetics metabolism MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Recombinant Proteins biosynthesis genetics MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Alignment MeSH
- Microscopy, Electron, Transmission MeSH
- Digestive System enzymology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- asparaginylendopeptidase MeSH Browser
- Cysteine Endopeptidases MeSH
- Hemoglobins MeSH
- Cathepsin B MeSH
- RNA, Messenger MeSH
- Recombinant Proteins MeSH