Nejvíce citovaný článek - PubMed ID 16834325
Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae
The soil chromophyte alga Xanthonema (X.) debile contains only non-carbonyl carotenoids and Chl-a. X. debile has an antenna system denoted Xanthophyte light-harvesting complex (XLH) that contains the carotenoids diadinoxanthin, heteroxanthin, and vaucheriaxanthin. The XLH pigment stoichiometry was calculated by chromatographic techniques and the pigment-binding structure studied by resonance Raman spectroscopy. The pigment ratio obtained by HPLC was found to be close to 8:1:2:1 Chl-a:heteroxanthin:diadinoxanthin:vaucheriaxanthin. The resonance Raman spectra suggest the presence of 8-10 Chl-a, all of which are 5-coordinated to the central Mg, with 1-3 Chl-a possessing a macrocycle distorted from the relaxed conformation. The three populations of carotenoids are in the all-trans configuration. Vaucheriaxanthin absorbs around 500-530 nm, diadinoxanthin at 494 nm and heteroxanthin at 487 nm at 4.5 K. The effective conjugation length of heteroxanthin and diadinoxanthin has been determined as 9.4 in both cases; the environment polarizability of the heteroxanthin and diadinoxanthin binding pockets is 0.270 and 0.305, respectively.
- Klíčová slova
- Algae, Carotenoids, Chl-a, Diadinoxanthin, Heteroxanthin, Light-harvesting complex, Resonance Raman,
- MeSH
- Heterokontophyta chemie MeSH
- karotenoidy chemie MeSH
- konformace proteinů MeSH
- Ramanova spektroskopie MeSH
- světlosběrné proteinové komplexy chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- karotenoidy MeSH
- světlosběrné proteinové komplexy MeSH
A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP.
- Klíčová slova
- Intramolecular charge-transfer state, Non-photochemical quenching, Orange carotenoid protein, Red carotenoid protein, Ultrafast spectroscopy,
- MeSH
- karotenoidy analýza MeSH
- sinice chemie MeSH
- spektrální analýza metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- karotenoidy MeSH
The major light-harvesting complex of Amphidinium (A.) carterae, chlorophyll-a-chlorophyll-c 2-peridinin-protein complex (acpPC), was studied using ultrafast pump-probe spectroscopy at low temperature (60 K). An efficient peridinin-chlorophyll-a energy transfer was observed. The stimulated emission signal monitored in the near-infrared spectral region was stronger when redder part of peridinin pool was excited, indicating that these peridinins have the S1/ICT (intramolecular charge-transfer) state with significant charge-transfer character. This may lead to enhanced energy transfer efficiency from "red" peridinins to chlorophyll-a. Contrary to the water-soluble antenna of A. carterae, peridinin-chlorophyll-a protein, the energy transfer rates in acpPC were slower under low-temperature conditions. This fact underscores the influence of the protein environment on the excited-state dynamics of pigments and/or the specificity of organization of the two pigment-protein complexes.
- MeSH
- blízká infračervená spektroskopie * MeSH
- časové faktory MeSH
- chlorofyl a MeSH
- chlorofyl metabolismus MeSH
- Dinoflagellata metabolismus MeSH
- elektrony MeSH
- karotenoidy metabolismus MeSH
- kinetika MeSH
- nízká teplota * MeSH
- přenos energie MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- karotenoidy MeSH
- peridinin MeSH Prohlížeč
- světlosběrné proteinové komplexy MeSH
Carotenoids are known to offer protection against the potentially damaging combination of light and oxygen encountered by purple phototrophic bacteria, but the efficiency of such protection depends on the type of carotenoid. Rhodobacter sphaeroides synthesizes spheroidene as the main carotenoid under anaerobic conditions whereas, in the presence of oxygen, the enzyme spheroidene monooxygenase catalyses the incorporation of a keto group forming spheroidenone. We performed ultrafast transient absorption spectroscopy on membranes containing reaction center-light-harvesting 1-PufX (RC-LH1-PufX) complexes and showed that when oxygen is present the incorporation of the keto group into spheroidene, forming spheroidenone, reconfigures the energy transfer pathway in the LH1, but not the LH2, antenna. The spheroidene/spheroidenone transition acts as a molecular switch that is suggested to twist spheroidenone into an s-trans configuration increasing its conjugation length and lowering the energy of the lowest triplet state so it can act as an effective quencher of singlet oxygen. The other consequence of converting carotenoids in RC-LH1-PufX complexes is that S(2)/S(1)/triplet pathways for spheroidene is replaced with a new pathway for spheroidenone involving an activated intramolecular charge-transfer (ICT) state. This strategy for RC-LH1-PufX-spheroidenone complexes maintains the light-harvesting cross-section of the antenna by opening an active, ultrafast S(1)/ICT channel for energy transfer to LH1 Bchls while optimizing the triplet energy for singlet oxygen quenching. We propose that spheroidene/spheroidenone switching represents a simple and effective photoprotective mechanism of likely importance for phototrophic bacteria that encounter light and oxygen.
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- bakteriochlorofyly chemie metabolismus MeSH
- buněčná membrána metabolismus MeSH
- karotenoidy chemie metabolismus MeSH
- kyslík metabolismus MeSH
- molekulární struktura MeSH
- přenos energie účinky záření MeSH
- Proteobacteria chemie metabolismus MeSH
- Rhodobacter sphaeroides chemie metabolismus MeSH
- spektrofotometrie MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bakteriochlorofyly MeSH
- karotenoidy MeSH
- kyslík MeSH
- PufX protein, Rhodobacter MeSH Prohlížeč
- spheroidene MeSH Prohlížeč
- spheroidenone MeSH Prohlížeč
- světlosběrné proteinové komplexy MeSH
Carotenoids are naturally occurring pigments that absorb light in the spectral region in which the sun irradiates maximally. These molecules transfer this energy to chlorophylls, initiating the primary photochemical events of photosynthesis. Carotenoids also regulate the flow of energy within the photosynthetic apparatus and protect it from photoinduced damage caused by excess light absorption. To carry out these functions in nature, carotenoids are bound in discrete pigment-protein complexes in the proximity of chlorophylls. A few three-dimensional structures of these carotenoid complexes have been determined by X-ray crystallography. Thus, the stage is set for attempting to correlate the structural information with the spectroscopic properties of carotenoids to understand the molecular mechanism(s) of their function in photosynthetic systems. In this Account, we summarize current spectroscopic data describing the excited state energies and ultrafast dynamics of purified carotenoids in solution and bound in light-harvesting complexes from purple bacteria, marine algae, and green plants. Many of these complexes can be modified using mutagenesis or pigment exchange which facilitates the elucidation of correlations between structure and function. We describe the structural and electronic factors controlling the function of carotenoids as energy donors. We also discuss unresolved issues related to the nature of spectroscopically dark excited states, which could play a role in light harvesting. To illustrate the interplay between structural determinations and spectroscopic investigations that exemplifies work in the field, we describe the spectroscopic properties of four light-harvesting complexes whose structures have been determined to atomic resolution. The first, the LH2 complex from the purple bacterium Rhodopseudomonas acidophila, contains the carotenoid rhodopin glucoside. The second is the LHCII trimeric complex from higher plants which uses the carotenoids lutein, neoxanthin, and violaxanthin to transfer energy to chlorophyll. The third, the peridinin-chlorophyll-protein (PCP) from the dinoflagellate Amphidinium carterae, is the only known complex in which the bound carotenoid (peridinin) pigments outnumber the chlorophylls. The last is xanthorhodopsin from the eubacterium Salinibacter ruber. This complex contains the carotenoid salinixanthin, which transfers energy to a retinal chromophore. The carotenoids in these pigment-protein complexes transfer energy with high efficiency by optimizing both the distance and orientation of the carotenoid donor and chlorophyll acceptor molecules. Importantly, the versatility and robustness of carotenoids in these light-harvesting pigment-protein complexes have led to their incorporation in the design and synthesis of nanoscale antenna systems. In these bioinspired systems, researchers are seeking to improve the light capture and use of energy from the solar emission spectrum.
- MeSH
- chlorofyl chemie metabolismus MeSH
- Dinoflagellata chemie metabolismus MeSH
- Eukaryota metabolismus MeSH
- fotosyntéza * fyziologie MeSH
- glukosidy MeSH
- glykosidy MeSH
- karotenoidy * chemie metabolismus MeSH
- lutein chemie metabolismus MeSH
- přenos energie MeSH
- Rhodopseudomonas metabolismus MeSH
- světlo MeSH
- světlosběrné proteinové komplexy * chemie metabolismus MeSH
- tylakoidy metabolismus MeSH
- xanthofyly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- chlorofyl MeSH
- glukosidy MeSH
- glykosidy MeSH
- karotenoidy * MeSH
- lutein MeSH
- neoxanthin MeSH Prohlížeč
- peridinin MeSH Prohlížeč
- rhodopin glucoside MeSH Prohlížeč
- salinixanthin MeSH Prohlížeč
- světlosběrné proteinové komplexy * MeSH
- violaxanthin MeSH Prohlížeč
- xanthofyly MeSH
We use femtosecond transient absorption spectroscopy to study chlorophyll (Chl)-Chl energy transfer in the peridinin-chlorophyll protein (PCP) reconstituted with mixtures of either chlorophyll b (Chlb) and Chld or Chla and bacteriochlorophyll a (BChla). Analysis of absorption and transient absorption spectra demonstrated that reconstitution with chlorophyll mixtures produces a significant fraction of PCP complexes that contains a different Chl in each domain of the PCP monomer. The data also suggest that binding affinity of Chla is less than that of the other three Chl species. By exciting the Chl species lying at higher energy, we obtained energy transfer times of 40 +/- 5 ps (Chlb-Chld) and 59 +/- 3 ps (Chla-BChla). The experimental values match those obtained from the Förster equation, 36 and 50 ps, respectively, showing that energy transfer proceeds via the Förster mechanism. Excitation of peridinin in the PCP complex reconstituted with Chla/BChla mixture provided time constants of 2.6 and 0.4 ps for the peridinin-Chla and peridinin-BChla energy transfer, matching those obtained from studies of PCP complexes reconstituted with single chlorophyll species.
- MeSH
- chemické modely * MeSH
- chlorofyl chemie účinky záření MeSH
- dávka záření MeSH
- karotenoidy chemie účinky záření MeSH
- počítačová simulace MeSH
- přenos energie účinky záření MeSH
- světlo MeSH
- vazba proteinů účinky záření MeSH
- vazebná místa účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- karotenoidy MeSH
- peridinin MeSH Prohlížeč