Nejvíce citovaný článek - PubMed ID 16876668
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
- Klíčová slova
- Alzheimer’s disease, Chemical Weapons Convention, acetylcholinesterase, nerve agents,
- MeSH
- acetylcholinesterasa * metabolismus MeSH
- Alzheimerova nemoc * farmakoterapie enzymologie MeSH
- chemická válka zákonodárství a právo MeSH
- cholinesterasové inhibitory terapeutické užití MeSH
- GPI-vázané proteiny antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- nervová bojová látka * MeSH
- stárnutí metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- acetylcholinesterasa * MeSH
- ACHE protein, human MeSH Prohlížeč
- cholinesterasové inhibitory MeSH
- GPI-vázané proteiny MeSH
- nervová bojová látka * MeSH
Alzheimer's disease (AD) is a neurodegenerative disease that is usually accompanied by aging, increasingly being the most common cause of dementia in the elderly. This disorder is characterized by the accumulation of beta amyloid plaques (Aβ) resulting from impaired amyloid precursor protein (APP) metabolism, together with the formation of neurofibrillary tangles and tau protein hyperphosphorylation. The exacerbated production of reactive oxygen species (ROS) triggers the process called oxidative stress, which increases neuronal cell abnormalities, most often followed by apoptosis, leading to cognitive dysfunction and dementia. In this context, the development of new therapies for the AD treatment is necessary. Antioxidants, for instance, are promising species for prevention and treatment because they are capable of disrupting the radical chain reaction, reducing the production of ROS. These species have also proven to be adjunctive to conventional treatments making them more effective. In this sense, several recently published works have focused their attention on oxidative stress and antioxidant species. Therefore, this review seeks to show the most relevant findings of these studies.
- Klíčová slova
- Alzheimer’s disease, antioxidants, cellular respiration, free radicals, oxidative stress,
- MeSH
- Alzheimerova nemoc farmakoterapie metabolismus MeSH
- amyloidní beta-protein chemie metabolismus MeSH
- antioxidancia farmakologie terapeutické užití MeSH
- fosforylace MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- oxidační stres účinky léků MeSH
- proteiny tau chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- antioxidancia MeSH
- proteiny tau MeSH
Six quinoline-piperonal hybrids were synthesized and evaluated as potential drugs against Alzheimer's disease (AD). Theoretical analysis of the pharmacokinetic and toxicological properties of the compounds suggest that they present good oral bio-availability and are also capable of penetrating the blood-brain barrier, qualifying as leads for new drugs against AD. Evaluation of their inhibitory capacity against acetyl- and butyrilcholinesterases (AChE and BChE) through Ellmann's test showed that three compounds present promising results with one of them being capable of inhibiting both enzymes. Further docking studies of the six compounds synthesized helped to elucidate the main interactions that may be responsible for the inhibitory activities observed.
- Klíčová slova
- Alzheimer’s disease, acetylcholinesterase, guanil-hydrazones, piperonal, quinolines,
- MeSH
- Alzheimerova nemoc farmakoterapie metabolismus MeSH
- benzaldehydy * chemie MeSH
- benzodioxoly * chemie MeSH
- chinoliny * chemie MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakokinetika farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární struktura MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- techniky syntetické chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzaldehydy * MeSH
- benzodioxoly * MeSH
- chinoliny * MeSH
- cholinesterasové inhibitory MeSH
- piperonal MeSH Prohlížeč
- quinoline MeSH Prohlížeč
In the last decades, the development of new technologies applied to lipidomics has revitalized the analysis of lipid profile alterations and the understanding of the underlying molecular mechanisms of lipid metabolism, together with their involvement in the occurrence of human disease. Of particular interest is the study of omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFAs), notably EPA (eicosapentaenoic acid, 20:5n-3), DHA (docosahexaenoic acid, 22:6n-3), and ARA (arachidonic acid, 20:4n-6), and their transformation into bioactive lipid mediators. In this sense, new families of PUFA-derived lipid mediators, including resolvins derived from EPA and DHA, and protectins and maresins derived from DHA, are being increasingly investigated because of their active role in the "return to homeostasis" process and resolution of inflammation. Recent findings reviewed in the present study highlight that the omega-6 fatty acid ARA appears increased, and omega-3 EPA and DHA decreased in most cancer tissues compared to normal ones, and that increments in omega-3 LC-PUFAs consumption and an omega-6/omega-3 ratio of 2-4:1, are associated with a reduced risk of breast, prostate, colon and renal cancers. Along with their lipid-lowering properties, omega-3 LC-PUFAs also exert cardioprotective functions, such as reducing platelet aggregation and inflammation, and controlling the presence of DHA in our body, especially in our liver and brain, which is crucial for optimal brain functionality. Considering that DHA is the principal omega-3 FA in cortical gray matter, the importance of DHA intake and its derived lipid mediators have been recently reported in patients with major depressive and bipolar disorders, Alzheimer disease, Parkinson's disease, and amyotrophic lateral sclerosis. The present study reviews the relationships between major diseases occurring today in the Western world and LC-PUFAs. More specifically this review focuses on the dietary omega-3 LC-PUFAs and the omega-6/omega-3 balance, in a wide range of inflammation disorders, including autoimmune diseases. This review suggests that the current recommendations of consumption and/or supplementation of omega-3 FAs are specific to particular groups of age and physiological status, and still need more fine tuning for overall human health and well being.
- Klíčová slova
- Disease, Health, Inflammation, Lipidomics, Lipids, Long chain polyunsaturated fatty acids, Omega-3, Resolvins,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH