Nejvíce citovaný článek - PubMed ID 16887800
Brassinosteroids (BRs) are steroidal phytohormones indispensable for plant growth, development, and responses to environmental stresses. The export of bioactive BRs to the apoplast is essential for BR signaling initiation, which requires binding of a BR molecule to the extracellular domains of the plasma membrane-localized receptor complex. We have previously shown that the Arabidopsis thaliana ATP-binding cassette (ABC) transporter ABCB19 functions as a BR exporter and, together with its close homolog ABCB1, positively regulates BR signaling. Here, we demonstrate that ABCB1 is another BR transporter. The ATP hydrolysis activity of ABCB1 can be stimulated by bioactive BRs, and its transport activity was confirmed in proteoliposomes and protoplasts. Structures of ABCB1 were determined in substrate-unbound (apo), brassinolide (BL)-bound, and ATP plus BL-bound states. In the BL-bound structure, BL is bound to the hydrophobic cavity formed by the transmembrane domain and triggers local conformational changes. Together, our data provide additional insights into ABC transporter-mediated BR export.
- Klíčová slova
- ABCB1, Arabidopsis, brassinosteroids, signaling, structure, transport,
- MeSH
- ABC transportéry * metabolismus chemie genetika MeSH
- adenosintrifosfát metabolismus MeSH
- Arabidopsis * metabolismus genetika MeSH
- biologický transport MeSH
- brassinosteroidy * metabolismus MeSH
- proteiny huseníčku * metabolismus chemie genetika MeSH
- steroidy heterocyklické metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportéry * MeSH
- adenosintrifosfát MeSH
- brassinolide MeSH Prohlížeč
- brassinosteroidy * MeSH
- proteiny huseníčku * MeSH
- steroidy heterocyklické MeSH
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
- Klíčová slova
- auxin, auxin distribution, auxin signalling, auxin transport, direct visualization, indirect visualization, receptor, sensor,
- MeSH
- Arabidopsis metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- vývoj rostlin fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny indoloctové MeSH
The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium.
- MeSH
- Arabidopsis účinky léků genetika metabolismus MeSH
- flavonoidy farmakologie MeSH
- glukosyltransferasy genetika metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- mutace MeSH
- proteinfosfatasa 2 genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3-hydroxyflavone MeSH Prohlížeč
- flavonoidy MeSH
- glukosyltransferasy MeSH
- kyseliny indoloctové MeSH
- PIN2 protein, Arabidopsis MeSH Prohlížeč
- proteinfosfatasa 2 MeSH
- proteiny huseníčku MeSH
- RCN1 protein, Arabidopsis MeSH Prohlížeč
- RHM1 protein, Arabidopsis MeSH Prohlížeč
Here we present an overview of what is known about endogenous plant compounds that act as inhibitors of hormonal transport processes in plants, about their identity and mechanism of action. We have also summarized commonly and less commonly used compounds of non-plant origin and synthetic drugs that show at least partial 'specificity' to transport or transporters of particular phytohormones. Our main attention is focused on the inhibitors of auxin transport. The urgent need to understand precisely the molecular mechanism of action of these inhibitors is highlighted.
- Klíčová slova
- Abscisic acid, Auxin, Cell biology, Cytokinins, Inhibitors, Plant hormones, Strigolactones, Transport,
- MeSH
- biologické modely MeSH
- biologický transport MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity.
- MeSH
- Arabidopsis genetika metabolismus MeSH
- biologický transport genetika fyziologie MeSH
- kyseliny indoloctové metabolismus MeSH
- mikrofilamenta metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny vázající takrolimus genetika metabolismus MeSH
- regulace genové exprese u rostlin genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- proteiny vázající takrolimus MeSH
- TWD1 protein, Arabidopsis MeSH Prohlížeč
Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development.
- Klíčová slova
- Arabidopsis thaliana, UGT89C1, auxin, auxin transport, auxin turnover, flavonoid, flavonol glycosides, flavonols, metabolism, rhamnose*, rol1-2, transport,
- MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- flavonoly metabolismus MeSH
- glukosyltransferasy genetika metabolismus MeSH
- hexosyltransferasy chemie genetika metabolismus MeSH
- homeostáza MeSH
- kyseliny indoloctové metabolismus MeSH
- molekulární sekvence - údaje MeSH
- proteiny huseníčku chemie genetika metabolismus MeSH
- rhamnosa metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flavonoly MeSH
- glukosyltransferasy MeSH
- hexosyltransferasy MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- rhamnosa MeSH
- RHM1 protein, Arabidopsis MeSH Prohlížeč
- UGT89C1 protein, Arabidopsis MeSH Prohlížeč
Interacting and coordinated auxin transporter actions in plants underlie a flexible network that mobilizes auxin in response to many developmental and environmental changes encountered by these sessile organisms. The independent but synergistic activity of individual transporters can be differentially regulated at various levels. This invests auxin transport mechanisms with robust functional redundancy and added auxin flow capacity when needed. An evolutionary perspective clarifies the roles of the different transporter groups in plant development. Mathematical and functional analysis of elements of auxin transport makes it possible to rationalize the relative contributions of members of the respective transporter classes to the localized auxin transport streams that then underlie both preprogrammed developmental changes and reactions to environmental stimuli.
- MeSH
- biologické modely MeSH
- biologický transport MeSH
- fyziologie rostlin MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové transportní proteiny metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny metabolismus MeSH
- signální transdukce MeSH
- teoretické modely MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
- rostlinné proteiny MeSH