Nejvíce citovaný článek - PubMed ID 11701880
Brassinosteroids (BRs) are steroidal phytohormones indispensable for plant growth, development, and responses to environmental stresses. The export of bioactive BRs to the apoplast is essential for BR signaling initiation, which requires binding of a BR molecule to the extracellular domains of the plasma membrane-localized receptor complex. We have previously shown that the Arabidopsis thaliana ATP-binding cassette (ABC) transporter ABCB19 functions as a BR exporter and, together with its close homolog ABCB1, positively regulates BR signaling. Here, we demonstrate that ABCB1 is another BR transporter. The ATP hydrolysis activity of ABCB1 can be stimulated by bioactive BRs, and its transport activity was confirmed in proteoliposomes and protoplasts. Structures of ABCB1 were determined in substrate-unbound (apo), brassinolide (BL)-bound, and ATP plus BL-bound states. In the BL-bound structure, BL is bound to the hydrophobic cavity formed by the transmembrane domain and triggers local conformational changes. Together, our data provide additional insights into ABC transporter-mediated BR export.
- Klíčová slova
- ABCB1, Arabidopsis, brassinosteroids, signaling, structure, transport,
- MeSH
- ABC transportéry * metabolismus genetika chemie MeSH
- adenosintrifosfát metabolismus MeSH
- Arabidopsis * metabolismus genetika MeSH
- biologický transport MeSH
- brassinosteroidy * metabolismus MeSH
- proteiny huseníčku * metabolismus genetika chemie MeSH
- steroidy heterocyklické MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportéry * MeSH
- adenosintrifosfát MeSH
- brassinolide MeSH Prohlížeč
- brassinosteroidy * MeSH
- proteiny huseníčku * MeSH
- steroidy heterocyklické MeSH
Plant hormones are master regulators of plant growth and development. Better knowledge of their spatial signaling and homeostasis (transport and metabolism) on the lowest structural levels (cellular and subcellular) is therefore crucial to a better understanding of developmental processes in plants. Recent progress in phytohormone analysis at the cellular and subcellular levels has greatly improved the effectiveness of isolation protocols and the sensitivity of analytical methods. This review is mainly focused on homeostasis of two plant hormone groups, auxins and cytokinins. It will summarize and discuss their tissue- and cell-type specific distributions at the cellular and subcellular levels.
- Klíčová slova
- auxin, cellular level, cytokinin, phytohormone metabolism, phytohormone transport, subcellular level,
- MeSH
- biologický transport MeSH
- cytokininy metabolismus MeSH
- fyziologie rostlin * MeSH
- homeostáza * MeSH
- intracelulární prostor metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- metabolické sítě a dráhy MeSH
- organely metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné buňky metabolismus MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides.
- Klíčová slova
- Arabidopsis, auxin homeostasis, chemical genetics, ethylene signaling, herbicide, quinoline carboxamide, reactive oxygen species, triple response,
- MeSH
- aminokyseliny cyklické metabolismus MeSH
- Arabidopsis genetika metabolismus MeSH
- chinolony metabolismus MeSH
- ethyleny metabolismus MeSH
- exprese genu MeSH
- herbicidy chemie MeSH
- homeostáza MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- semenáček metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-aminocyclopropane-1-carboxylic acid MeSH Prohlížeč
- aminokyseliny cyklické MeSH
- chinolony MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- herbicidy MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- reaktivní formy kyslíku MeSH
Here we present an overview of what is known about endogenous plant compounds that act as inhibitors of hormonal transport processes in plants, about their identity and mechanism of action. We have also summarized commonly and less commonly used compounds of non-plant origin and synthetic drugs that show at least partial 'specificity' to transport or transporters of particular phytohormones. Our main attention is focused on the inhibitors of auxin transport. The urgent need to understand precisely the molecular mechanism of action of these inhibitors is highlighted.
- Klíčová slova
- Abscisic acid, Auxin, Cell biology, Cytokinins, Inhibitors, Plant hormones, Strigolactones, Transport,
- MeSH
- biologické modely MeSH
- biologický transport MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity.
- MeSH
- Arabidopsis genetika metabolismus MeSH
- biologický transport genetika fyziologie MeSH
- kyseliny indoloctové metabolismus MeSH
- mikrofilamenta metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny vázající takrolimus genetika metabolismus MeSH
- regulace genové exprese u rostlin genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- proteiny vázající takrolimus MeSH
- TWD1 protein, Arabidopsis MeSH Prohlížeč
Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs.
- MeSH
- Arabidopsis genetika růst a vývoj MeSH
- kořeny rostlin genetika růst a vývoj metabolismus MeSH
- květy genetika růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- meristém růst a vývoj metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny přenášející organické kationty genetika MeSH
- regulace genové exprese u rostlin MeSH
- výhonky rostlin genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- At4g29140 protein, Arabidopsis MeSH Prohlížeč
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- proteiny přenášející organické kationty MeSH
Polar auxin transport (PAT) plays key roles in the regulation of plant growth and development. Flavonoids have been implicated in the inhibition of PAT. However, the active flavonoid derivative(s) involved in this process in vivo has not yet been identified. Here, we provide evidence that a specific flavonol bis-glycoside is correlated with shorter plant stature and reduced PAT. Specific flavonoid-biosynthetic or flavonoid-glycosylating steps were genetically blocked in Arabidopsis thaliana. The differential flavonol patterns established were analyzed by high-performance liquid chromatography (HPLC) and related to altered plant stature. PAT was monitored in stem segments using a radioactive [(3)H]-indole-3-acetic acid tracer. The flavonoid 3-O-glucosyltransferase mutant ugt78d2 exhibited a dwarf stature in addition to its altered flavonol glycoside pattern. This was accompanied by reduced PAT in ugt78d2 shoots. The ugt78d2-dependent growth defects were flavonoid dependent, as they were rescued by genetic blocking of flavonoid biosynthesis. Phenotypic and metabolic analyses of a series of mutants defective at various steps of flavonoid formation narrowed down the potentially active moiety to kaempferol 3-O-rhamnoside-7-O-rhamnoside. Moreover, the level of this compound was negatively correlated with basipetal auxin transport. These results indicate that kaempferol 3-O-rhamnoside-7-O-rhamnoside acts as an endogenous PAT inhibitor in Arabidopsis shoots.
- Klíčová slova
- Arabidopsis thaliana, flavonol biosynthesis, flavonol glycoside, flavonol glycosyltransferases, plant growth, polar auxin transport,
- MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- biologický transport MeSH
- fenotyp MeSH
- kempferoly metabolismus fyziologie MeSH
- kyseliny indoloctové metabolismus MeSH
- výhonky rostlin genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kempferoly MeSH
- kyseliny indoloctové MeSH
The phytohormone auxin is transported through the plant body either via vascular pathways or from cell to cell by specialized polar transport machinery. This machinery consists of a balanced system of passive diffusion combined with the activities of auxin influx and efflux carriers. Synthetic auxins that differ in the mechanisms of their transport across the plasma membrane together with polar auxin transport inhibitors have been used in many studies on particular auxin carriers and their role in plant development. However, the exact mechanism of action of auxin efflux and influx inhibitors has not been fully elucidated. In this report, the mechanism of action of the auxin influx inhibitors (1-naphthoxyacetic acid (1-NOA), 2-naphthoxyacetic acid (2-NOA), and 3-chloro-4-hydroxyphenylacetic acid (CHPAA)) is examined by direct measurements of auxin accumulation, cellular phenotypic analysis, as well as by localization studies of Arabidopsis thaliana L. auxin carriers heterologously expressed in Nicotiana tabacum L., cv. Bright Yellow cell suspensions. The mode of action of 1-NOA, 2-NOA, and CHPAA has been shown to be linked with the dynamics of the plasma membrane. The most potent inhibitor, 1-NOA, blocked the activities of both auxin influx and efflux carriers, whereas 2-NOA and CHPAA at the same concentration preferentially inhibited auxin influx. The results suggest that these, previously unknown, activities of putative auxin influx inhibitors regulate overall auxin transport across the plasma membrane depending on the dynamics of particular membrane vesicles.
- MeSH
- biologický transport účinky léků MeSH
- buněčná membrána účinky léků metabolismus MeSH
- buňky MeSH
- fenylacetáty farmakologie MeSH
- glykoláty farmakologie MeSH
- kyseliny indoloctové metabolismus MeSH
- tabák účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-naphthoxyacetic acid MeSH Prohlížeč
- 2-naphthoxyacetic acid MeSH Prohlížeč
- 3-chloro-4-hydroxyphenylacetic acid MeSH Prohlížeč
- fenylacetáty MeSH
- glykoláty MeSH
- kyseliny indoloctové MeSH
Interacting and coordinated auxin transporter actions in plants underlie a flexible network that mobilizes auxin in response to many developmental and environmental changes encountered by these sessile organisms. The independent but synergistic activity of individual transporters can be differentially regulated at various levels. This invests auxin transport mechanisms with robust functional redundancy and added auxin flow capacity when needed. An evolutionary perspective clarifies the roles of the different transporter groups in plant development. Mathematical and functional analysis of elements of auxin transport makes it possible to rationalize the relative contributions of members of the respective transporter classes to the localized auxin transport streams that then underlie both preprogrammed developmental changes and reactions to environmental stimuli.
- MeSH
- biologické modely MeSH
- biologický transport MeSH
- fyziologie rostlin MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové transportní proteiny metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny metabolismus MeSH
- signální transdukce MeSH
- teoretické modely MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
- rostlinné proteiny MeSH
There have been few examples of the application of our growing knowledge of hormone action to crop improvement. In this review we discuss what is known about the critical points regulating auxin action. We examine auxin metabolism, transport, perception and signalling and identify genes and proteins that might be keys to regulation, particularly the rate-limiting steps in various pathways. Certain mutants show that substrate flow in biosynthesis can be limiting. To date there is little information available on the genes and proteins of catabolism. There have been several auxin transport proteins and some elegant transport physiology described recently, and the potential for using transport proteins to manage free indole-3-acetic acid (IAA) concentrations is discussed. Free IAA is very mobile, and so while it may be more practical to control auxin action through managing the receptor and signalling pathways, the candidate genes and proteins through which this can be done remain largely unknown. From the available evidence, it is clear that the reason for so few commercial applications arising from the control of auxin action is that knowledge is still limited.
- MeSH
- biologický transport MeSH
- homeostáza MeSH
- kyseliny indoloctové biosyntéza metabolismus MeSH
- rostliny genetika metabolismus MeSH
- signální transdukce fyziologie MeSH
- vývoj rostlin MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyseliny indoloctové MeSH