Most cited article - PubMed ID 17203485
Methods for additive hydration allowing observation of fully hydrated state of wet samples in environmental SEM
In this work, we focus on the low-temperature behavior of concentrated aqueous solutions of cesium chloride and discover two hydrates of CsCl. We employ four different methods, namely, (i) simple cooling at rates between 0.5 and 80 K s-1, (ii) simple cooling followed by pressurization, (iii) hyperquenching at 106 to 107 K s-1, and (iv) hyperquenching followed by pressurization. Depending on the method, different types of phase behaviors are observed, which encompass crystallization involving freeze-concentration, pressure-induced amorphization, full vitrification, and polyamorphic transformation. The CsCl hydrates discovered in our work cold-crystallize above 150 K upon heating after ultrafast vitrification (routes iii and iv) and show melting temperatures below the eutectic temperature of 251 K. We determine the composition of these hydrates to be CsCl·5H2O and CsCl·6H2O and find evidence for their existence in ESEM, calorimetry, and X-ray diffraction. The dominant and less metastable hydrate is the hexahydrate, where the pentahydrate appears as a minority species. We also reveal the birthplace for the CsCl hydrates, namely, the freeze-concentrated solution (FCS) formed upon cold-crystallization of the fully glassy solution (from iii and iv). The spongy FCS produced upon cooling of the liquid (from i and ii) is incapable of crystallizing CsCl-hydrates. By contrast, the FCS produced upon heating the glassy solution (from iii and iv) shows tiny, fine features that are capable of crystallizing CsCl-hydrates. Our findings contradict the current knowledge that alkali chlorides only have hydrates for the smaller cations Li+ and Na+, but not for the larger cations K+, Rb+, and Cs+ and pave the way for future determination of CsCl-hydrate crystal structures. The pathway to metastable crystalline materials outlined here might be more generally applicable and found in nature, e.g., in comets or on interstellar dust grains, when glassy aqueous solutions crystallize upon heating.
- Publication type
- Journal Article MeSH
This paper presents mathematical-physics analyses in the field of the influence of inserted sensors on the supersonic flow behind the nozzle. It evaluates differences in the flow in the area of atmospheric pressure and low pressure on the boundary of continuum mechanics. To analyze the formation of detached and conical shock waves and their distinct characteristics in atmospheric pressure and low pressure on the boundary of continuum mechanics, we conduct comparative analyses using two types of inserted sensors: flat end and tip. These analyses were performed in two variants, considering pressure ratios of 10:1 both in front of and behind the nozzle. The first variant involved using atmospheric pressure in the chamber in front of the nozzle. The second type of analysis was conducted with a pressure of 10,000 Pa in front of the nozzle. While this represents a low pressure at the boundary of continuum mechanics, it remains above the critical limit of 113 Pa. This deliberate choice was made as it falls within the team's research focus on low-pressure regions. Although it is situated at the boundary of continuum mechanics, it is intentionally within a pressure range where the viscosity values are not yet dependent on pressure. In these variants, the nature of the flow was investigated concerning the ratio of inertial and viscous flow forces under atmospheric pressure conditions, and it was compared with flow conditions at low pressure. In the low-pressure scenario, the ratio of inertial and viscous flow forces led to a significant reduction in the value of inertial forces. The results showed an altered flow character, characterized by a reduced tendency for the formation of cross-oblique shockwaves within the nozzle itself and the emergence of shockwaves with increased thickness. This increased thickness is attributed to viscous forces inhibiting the thickening of the shockwave itself. This altered flow character may have implications, such as influencing temperature sensing with a tipped sensor. The shockwave area may form in a very confined space in front of the tip, potentially impacting the results. Additionally, due to reduced inertial forces, the cone shock wave's angle is a few degrees larger than theoretical predictions, and there is no tilting due to lower inertial forces. These analyses serve as the basis for upcoming experiments in the experimental chamber designed specifically for investigations in the given region of low pressures at the boundary of continuum mechanics. The objective, in combination with mathematical-physics analyses, is to determine changes within this region of the continuum mechanics boundary where inertial forces are markedly lower than in the atmosphere but remain under the influence of unreduced viscosity.
- Keywords
- Ansys Fluent, ESEM, critical flow, nozzle, one-dimensional flow theory, pressure sensors, sensing techniques for low pressures, temperature sensors,
- Publication type
- Journal Article MeSH
The article describes the combination of experimental measurements with mathematical-physics analyses in flow investigation in the chambers of the scintillator detector, which is a part of the environmental scanning electron microscope. The chambers are divided with apertures by small openings that keep the desirable pressure differences between three chambers: The specimen chamber, the differentially pumped intermediate chamber, and the scintillator chamber. There are conflicting demands on these apertures. On the one hand, the diameter of the apertures must be as big as possible so that they incur minimal losses of the passing secondary electrons. On the other hand, it is possible to magnify the apertures only to a certain extent so the rotary and turbomolecular vacuum pump can maintain the required operating pressures in separate chambers. The article describes the combination of experimental measurement using an absolute pressure sensor and mathematical physics analysis to map all the specifics of the emerging critical supersonic flow in apertures between the chambers. Based on the experiments and their tuned analyses, the most effective variant of combining the sizes of each aperture concerning different operating pressures in the detector is determined. The situation is made more difficult by the described fact that each aperture separates a different pressure gradient, so the gas flow through each aperture has its own characteristics with a different type of critical flow, and they influence each other, thereby influencing the final passage of secondary electrons detected by the scintillator and thus affecting the resulting displayed image.
- Keywords
- Ansys Fluent, ESEM, aperture, critical flow, one-dimensional flow theory, pressure sensor, scintillation detector,
- Publication type
- Journal Article MeSH
The Extended Low Temperature Method (ELTM) for the in-situ preparation of plant samples in an environmental scanning electron microscope enables carrying out repetitive topographical and material analysis at a higher resolution in the vacuum conditions of a scanning electron microscope or in the low gas pressure conditions of an environmental scanning electron microscope. The method does not require any chemical intervention and is thus suitable for imaging delicate structures rarely observable with common treatment methods. The method enables both sample stabilization as close to their native state as possible, as well as the transfer of the same sample from a low vacuum to an atmospheric condition for sample storage or later study. It is impossible for wet samples in the environmental scanning electron microscope. Our studies illustrate the high applicability of the ELTM for different types of plant tissue, from imaging of plant waxes at higher resolution, the morphological study of highly susceptible early somatic embryos to the elemental microanalysis of root cells. The method established here provides a very fast, universal and inexpensive solution for plant sample treatment usable in a commercial environmental scanning electron microscope equipped with a cooling Peltier stage.