Nejvíce citovaný článek - PubMed ID 18198189
STAT1 and STAT3 do not participate in FGF-mediated growth arrest in chondrocytes
The short rib polydactyly syndromes (SRPS) are a group of recessively inherited, perinatal-lethal skeletal disorders primarily characterized by short ribs, shortened long bones, varying types of polydactyly and concomitant visceral abnormalities. Mutations in several genes affecting cilia function cause SRPS, revealing a role for cilia function in skeletal development. To identify additional SRPS genes and discover novel ciliary molecules required for normal skeletogenesis, we performed exome sequencing in a cohort of patients and identified homozygosity for a missense mutation, p.E80K, in Intestinal Cell Kinase, ICK, in one SRPS family. The p.E80K mutation abolished serine/threonine kinase activity, resulting in altered ICK subcellular and ciliary localization, increased cilia length, aberrant cartilage growth plate structure, defective Hedgehog and altered ERK signalling. These data identify ICK as an SRPS-associated gene and reveal that abnormalities in signalling pathways contribute to defective skeletogenesis.
- MeSH
- cilie genetika patologie MeSH
- exom genetika MeSH
- kojenec MeSH
- kostra abnormality růst a vývoj MeSH
- lidé MeSH
- MAP kinasový signální systém MeSH
- mnohočetné abnormality genetika patofyziologie MeSH
- protein-serin-threoninkinasy genetika MeSH
- proteiny hedgehog genetika MeSH
- rodokmen MeSH
- sekvenční analýza DNA MeSH
- signální transdukce MeSH
- syndrom krátkého žebra a polydaktylie genetika patologie MeSH
- těhotenství MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CILK1 protein, human MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- proteiny hedgehog MeSH
Fibroblast growth factors (FGFs) deliver extracellular signals that govern many developmental and regenerative processes, but the mechanisms regulating FGF signaling remain incompletely understood. Here, we explored the relationship between intrinsic stability of FGF proteins and their biological activity for all 18 members of the FGF family. We report that FGF1, FGF3, FGF4, FGF6, FGF8, FGF9, FGF10, FGF16, FGF17, FGF18, FGF20, and FGF22 exist as unstable proteins, which are rapidly degraded in cell cultivation media. Biological activity of FGF1, FGF3, FGF4, FGF6, FGF8, FGF10, FGF16, FGF17, and FGF20 is limited by their instability, manifesting as failure to activate FGF receptor signal transduction over long periods of time, and influence specific cell behavior in vitro and in vivo. Stabilization via exogenous heparin binding, introduction of stabilizing mutations or lowering the cell cultivation temperature rescues signaling of unstable FGFs. Thus, the intrinsic ligand instability is an important elementary level of regulation in the FGF signaling system.
- MeSH
- chondrosarkom genetika metabolismus patologie MeSH
- cirkulární dichroismus MeSH
- fibroblastové růstové faktory chemie klasifikace genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mutace genetika MeSH
- mutantní proteiny chemie metabolismus MeSH
- nádorové buňky kultivované MeSH
- nádory kostí genetika metabolismus patologie MeSH
- nádory prsu genetika metabolismus patologie MeSH
- proliferace buněk * MeSH
- signální transdukce * MeSH
- stabilita proteinů MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fibroblastové růstové faktory MeSH
- mutantní proteiny MeSH
In 1994, the field of bone biology was significantly advanced by the discovery that activating mutations in the fibroblast growth factor receptor 3 (FGFR3) receptor tyrosine kinase (TK) account for the common genetic form of dwarfism in humans, achondroplasia (ACH). Other conditions soon followed, with the list of human disorders caused by FGFR3 mutations now reaching at least 10. An array of vastly different diagnoses is caused by similar mutations in FGFR3, including syndromes affecting skeletal development (hypochondroplasia [HCH], ACH, thanatophoric dysplasia [TD]), skin (epidermal nevi, seborrhaeic keratosis, acanthosis nigricans), and cancer (multiple myeloma [MM], prostate and bladder carcinoma, seminoma). Despite many years of research, several aspects of FGFR3 function in disease remain obscure or controversial. As FGFR3-related skeletal dysplasias are caused by growth attenuation of the cartilage, chondrocytes appear to be unique in their response to FGFR3 activation. However, the reasons why FGFR3 inhibits chondrocyte growth while causing excessive cellular proliferation in cancer are not clear. Likewise, the full spectrum of molecular events by which FGFR3 mediates its signaling is just beginning to emerge. This article describes the challenging journey to unravel the mechanisms of FGFR3 function in skeletal dysplasias, the extraordinary cellular manifestations of FGFR3 signaling in chondrocytes, and finally, the progress toward therapy for ACH and cancer.
- MeSH
- chondrocyty metabolismus patologie MeSH
- chrupavka abnormality metabolismus MeSH
- fibroblastové růstové faktory genetika metabolismus MeSH
- fosfatidylinositol-3-kinasy genetika metabolismus MeSH
- kosti a kostní tkáň abnormality metabolismus MeSH
- kůže metabolismus patologie MeSH
- letální geny MeSH
- lidé MeSH
- MAP kinasový signální systém genetika MeSH
- mezibuněčná komunikace MeSH
- mutace MeSH
- nádory kůže genetika metabolismus patologie MeSH
- natriuretický peptid typu C genetika metabolismus MeSH
- osteochondrodysplazie genetika metabolismus patologie MeSH
- proliferace buněk MeSH
- receptor fibroblastových růstových faktorů, typ 3 * genetika metabolismus MeSH
- regulace genové exprese MeSH
- signální transdukce MeSH
- transkripční faktor STAT1 genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- FGFR3 protein, human MeSH Prohlížeč
- fibroblastové růstové faktory MeSH
- fosfatidylinositol-3-kinasy MeSH
- natriuretický peptid typu C MeSH
- receptor fibroblastových růstových faktorů, typ 3 * MeSH
- STAT1 protein, human MeSH Prohlížeč
- transkripční faktor STAT1 MeSH
Oncogenic activation of the RAS-ERK MAP kinase signaling pathway can lead to uncontrolled proliferation but can also result in apoptosis or premature cellular senescence, both regarded as natural protective barriers to cell immortalization and transformation. In FGFR3-related skeletal dyplasias, oncogenic mutations in the FGFR3 receptor tyrosine kinase cause profound inhibition of cartilage growth resulting in severe dwarfism, although many of the precise mechanisms of FGFR3 action remain unclear. Mutated FGFR3 induces constitutive activation of the ERK pathway in chondrocytes and, remarkably, can also cause both increased proliferation and apoptosis in growing cartilage, depending on the gestational age. Here, we demonstrate that FGFR3 signaling is also capable of inducing premature senescence in chondrocytes, manifested as reversible, ERK-dependent growth arrest accompanied by alteration of cellular shape, loss of the extracellular matrix, upregulation of senescence markers (alpha-GLUCOSIDASE, FIBRONECTIN, CAVEOLIN 1, LAMIN A, SM22alpha and TIMP 1), and induction of senescence-associated beta-GALACTOSIDASE activity. Our data support a model whereby FGFR3 signaling inhibits cartilage growth via exploiting cellular responses originally designed to eliminate cells harboring activated oncogenes.
- MeSH
- apoptóza MeSH
- chondrocyty enzymologie patologie MeSH
- extracelulární matrix metabolismus MeSH
- extracelulárním signálem regulované MAP kinasy metabolismus MeSH
- fenotyp MeSH
- krysa rodu Rattus MeSH
- onkogeny genetika MeSH
- proliferace buněk MeSH
- receptor fibroblastových růstových faktorů, typ 3 metabolismus MeSH
- signální transdukce * MeSH
- stárnutí buněk * MeSH
- tvar buňky MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- extracelulárním signálem regulované MAP kinasy MeSH
- receptor fibroblastových růstových faktorů, typ 3 MeSH
Activation of fibroblast growth factor receptor 3 (FGFR3) leads to attenuation of cartilage growth. The members of the STAT family of transcription factors are believed to participate in FGFR3 signaling in cartilage, however the molecular mechanism of this action is poorly understood. Here, we demonstrate that a chronic FGF stimulus leads to accumulation of STAT1, 3, 5 and 6, evident in both in vitro chondrocyte model and murine limb explant cultures. Despite the accumulation, both endogenous and cytokine-induced activation of STAT1 and STAT3 is impaired by FGF, as demonstrated by imaging of active STAT nuclear translocation and analyses of STAT activatory phosphorylation and transcriptional activation. Further, we demonstrate that FGF induces expression of CIS, SOCS1 and SOCS3 inhibitors of gp130, a common receptor for the IL6-family of cytokines. Since cytokine-gp130 signaling represents an important positive regulator of cartilage, its inhibition may contribute to the growth-inhibitory effect of FGFR3 in cartilage.
- MeSH
- chondrocyty účinky léků metabolismus MeSH
- cytokinový receptor gp130 metabolismus MeSH
- fibroblastový růstový faktor 2 farmakologie MeSH
- interferon gama antagonisté a inhibitory farmakologie MeSH
- interleukin-6 antagonisté a inhibitory farmakologie MeSH
- myši MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- protein SOCS1 MeSH
- protein SOCS3 MeSH
- proteiny SOCS metabolismus MeSH
- receptor fibroblastových růstových faktorů, typ 3 metabolismus MeSH
- sekvence nukleotidů MeSH
- signální transdukce MeSH
- transkripční faktor STAT1 antagonisté a inhibitory metabolismus MeSH
- transkripční faktor STAT3 antagonisté a inhibitory metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cytokine inducible SH2-containing protein MeSH Prohlížeč
- cytokinový receptor gp130 MeSH
- fibroblastový růstový faktor 2 MeSH
- interferon gama MeSH
- interleukin-6 MeSH
- protein SOCS1 MeSH
- protein SOCS3 MeSH
- proteiny SOCS MeSH
- receptor fibroblastových růstových faktorů, typ 3 MeSH
- Socs1 protein, mouse MeSH Prohlížeč
- Socs3 protein, mouse MeSH Prohlížeč
- transkripční faktor STAT1 MeSH
- transkripční faktor STAT3 MeSH
Activating mutations in FGFR3 tyrosine kinase cause several forms of human skeletal dysplasia. Although the mechanisms of FGFR3 action in cartilage are not completely understood, it is believed that the STAT1 transcription factor plays a central role in pathogenic FGFR3 signaling. Here, we analyzed STAT1 activation by the N540K, G380R, R248C, Y373C, K650M and K650E-FGFR3 mutants associated with skeletal dysplasias. In a cell-free kinase assay, only K650M and K650E-FGFR3 caused activatory STAT1(Y701) phosphorylation. Similarly, in RCS chondrocytes, HeLa, and 293T cellular environments, only K650M and K650E-FGFR3 caused strong STAT1 activation. Other FGFR3 mutants caused weak (HeLa) or no activation (293T and RCS). This contrasted with ERK MAP kinase activation, which was strongly induced by all six mutants and correlated with the inhibition of proliferation in RCS chondrocytes. Thus the ability to activate STAT1 appears restricted to the K650M and K650E-FGFR3 mutants, which however account for only a small minority of the FGFR3-related skeletal dysplasia cases. Other pathways such as ERK should therefore be considered as central to pathological FGFR3 signaling in cartilage.
- MeSH
- bezbuněčný systém metabolismus MeSH
- biologické modely MeSH
- CHO buňky MeSH
- chrupavka metabolismus MeSH
- Cricetulus MeSH
- extracelulárním signálem regulované MAP kinasy metabolismus MeSH
- fosforylace MeSH
- HeLa buňky MeSH
- kosti a kostní tkáň patologie MeSH
- křečci praví MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mutantní proteiny fyziologie MeSH
- receptor fibroblastových růstových faktorů, typ 3 genetika fyziologie MeSH
- signální transdukce genetika fyziologie MeSH
- transkripční faktor STAT1 analýza metabolismus fyziologie MeSH
- vývojové onemocnění kostí genetika metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- extracelulárním signálem regulované MAP kinasy MeSH
- mutantní proteiny MeSH
- receptor fibroblastových růstových faktorů, typ 3 MeSH
- transkripční faktor STAT1 MeSH