Most cited article - PubMed ID 18534676
Nuclear organization of PML bodies in leukaemic and multiple myeloma cells
FTO and ALKBH5 proteins are essential erasers of N6-adenosine methylation in RNA. We studied how levels of FTO and ALKBH5 proteins changed during mouse embryonic development, aging, cardiomyogenesis, and neuroectodermal differentiation. We observed that aging in male and female mice was associated with FTO up-regulation in mouse hearts, brains, lungs, and kidneys, while the ALKBH5 level remained stable. FTO and ALKBH5 proteins were up-regulated during experimentally induced cardiomyogenesis, but the level of ALKBH5 protein was not changed when neuroectodermal differentiation was induced. HDAC1 depletion in mouse ES cells caused FTO down-regulation. In these cells, mRNA, carrying information from genes that regulate histone signature, RNA processing, and cell differentiation, was characterized by a reduced level of N6-adenosine methylation in specific gene loci, primarily regulating cell differentiation into neuroectoderm. Together, when we compared both RNA demethylating proteins, the FTO protein level undergoes the most significant changes during cell differentiation and aging. Thus, we conclude that during aging and neuronal differentiation, m6A RNA demethylation is likely regulated by the FTO protein but not via the function of ALKBH5.
- MeSH
- Adenosine metabolism MeSH
- AlkB Homolog 5, RNA Demethylase * genetics metabolism MeSH
- Cell Differentiation MeSH
- Embryonic Development MeSH
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO * genetics metabolism MeSH
- Mice MeSH
- RNA metabolism MeSH
- Aging genetics MeSH
- Up-Regulation MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenosine MeSH
- AlkB Homolog 5, RNA Demethylase * MeSH
- FTO protein, mouse MeSH Browser
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO * MeSH
- RNA MeSH
The essential components of splicing are the splicing factors accumulated in nuclear speckles; thus, we studied how DNA damaging agents and A-type lamin depletion affect the properties of these regions, positive on the SC-35 protein. We observed that inhibitor of PARP (poly (ADP-ribose) polymerase), and more pronouncedly inhibitors of RNA polymerases, caused DNA damage and increased the SC35 protein level. Interestingly, nuclear blebs, induced by PARP inhibitor and observed in A-type lamin-depleted or senescent cells, were positive on both the SC-35 protein and another component of the spliceosome, SRRM2. In the interphase cell nuclei, SC-35 interacted with the phosphorylated form of RNAP II, which was A-type lamin-dependent. In mitotic cells, especially in telophase, the SC35 protein formed a well-visible ring in the cytoplasmic fraction and colocalized with β-catenin, associated with the plasma membrane. The antibody against the SRRM2 protein showed that nuclear speckles are already established in the cytoplasm of the late telophase and at the stage of early cytokinesis. In addition, we observed the occurrence of splicing factors in the nuclear blebs and micronuclei, which are also sites of both transcription and splicing. This conclusion supports the fact that splicing proceeds transcriptionally. According to our data, this process is A-type lamin-dependent. Lamin depletion also reduces the interaction between SC35 and β-catenin in mitotic cells.
- Keywords
- PARP inhibitor, RNA pol II, SC-35, splicing,
- MeSH
- HeLa Cells MeSH
- Lamins metabolism MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Poly(ADP-ribose) Polymerase Inhibitors therapeutic use MeSH
- Poly (ADP-Ribose) Polymerase-1 MeSH
- RNA Polymerase II metabolism MeSH
- RNA Splicing Factors metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Lamins MeSH
- Poly(ADP-ribose) Polymerase Inhibitors MeSH
- PARP1 protein, human MeSH Browser
- Poly (ADP-Ribose) Polymerase-1 MeSH
- RNA Polymerase II MeSH
- RNA Splicing Factors MeSH
Cell differentiation into cardiomyocytes requires activation of differentiation-specific genes and epigenetic factors that contribute to these physiological processes. This study is focused on the in vitro differentiation of mouse embryonic stem cells (mESCs) induced into cardiomyocytes. The effects of clinically promising inhibitors of histone deacetylases (HDACi) on mESC cardiomyogenesis and on explanted embryonic hearts were also analyzed. HDAC1 depletion caused early beating of cardiomyocytes compared with those of the wild-type (wt) counterpart. Moreover, the adherence of embryonic bodies (EBs) was reduced in HDAC1 double knockout (dn) mESCs. The most important finding was differentiation-specific H4 deacetylation observed during cardiomyocyte differentiation of wt mESCs, while H4 deacetylation was weakened in HDAC1-depleted cells induced to the cardiac pathway. Analysis of the effect of HDACi showed that Trichostatin A (TSA) is a strong hyperacetylating agent, especially in wt mESCs, but only SAHA reduced the size of the beating areas in EBs that originated from HDAC1 dn mESCs. Additionally, explanted embryonic hearts (e15) responded to treatment with HDACi: all of the tested HDACi (TSA, SAHA, VPA) increased the levels of H3K9ac, H4ac, H4K20ac, and pan-acetylated lysines in embryonic hearts. This observation shows that explanted tissue can be maintained in a hyperacetylation state several hours after excision, which appears to be useful information from the view of transplantation strategy and the maintenance of gene upregulation via acetylation in tissue intended for transplantation.
- Keywords
- HDAC1, cardiomyocytes, embryonic stem cells, epigenetics, histones H3 and H4,
- MeSH
- Acetylation MeSH
- Cell Differentiation drug effects MeSH
- Gene Deletion * MeSH
- Embryo, Mammalian cytology MeSH
- Embryoid Bodies drug effects metabolism MeSH
- Histones metabolism MeSH
- Histone Deacetylase Inhibitors pharmacology MeSH
- Myocytes, Cardiac cytology drug effects metabolism MeSH
- Methylation MeSH
- Mouse Embryonic Stem Cells cytology drug effects metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Organogenesis * drug effects MeSH
- Protein Processing, Post-Translational drug effects MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Histones MeSH
- Histone Deacetylase Inhibitors MeSH
53BP1 is a very well-known protein that is recruited to DNA lesions. The focal accumulation of p53 binding protein, 53BP1, is a main feature indicating the repair of spontaneous or irradiation-induced foci (IRIF). Thus, here, we addressed the question of whether mutations in the TP53 gene, which often affect the level of p53 protein, can change the recruitment of 53BP1 to γ- or UVA-irradiated chromatin. In various TP53 mutants, we observed a distinct accumulation of 53BP1 protein to UV-induced DNA lesions: in R273C mutants, 53BP1 appeared transiently at DNA lesions, during 10-30 min after irradiation; the mutation R282W was responsible for accumulation of 53BP1 immediately after UVA-damage; and in L194F mutants, the first appearance of 53BP1 protein at the lesions occurred during 60-70 min. These results showed that specific mutations in the TP53 gene stand behind not only different levels of p53 protein, but also affect the localized kinetics of 53BP1 protein in UVA-damaged chromatin. However, after γ-irradiation, only G245S mutation in TP53 gene was associated with surprisingly decreased level of 53BP1 protein. In other mutant cell lines, levels of 53BP1 were not affected by γ-rays. To these effects, we conversely found a distinct number of 53BP1-positive irradiation-induced foci in various TP53 mutants. The R280K, G245S, L194F mutations, or TP53 deletion were also characterized by radiation-induced depletion in MDC1 protein. Moreover, in mutant cells, an interaction between MDC1 and 53BP1 proteins was abrogated when compared with wild-type counterpart. Together, the kinetics of 53BP1 accumulation at UV-induced DNA lesions is different in various TP53 mutant cells. After γ-irradiation, despite changes in a number and a volume of 53BP1-positive foci, levels of 53BP1 protein were relatively stable. Here, we showed a link between the status of MDC1 protein and TP53 gene, which specific mutations caused radiation-induced MDC1 down-regulation. This observation is significant, especially with regard to radiotherapy of tumors with abrogated function of TP53 gene.
- Keywords
- 53BP1 protein, DNA repair, Histone γH2AX, MDC1 protein, TP53 gene,
- MeSH
- Tumor Suppressor p53-Binding Protein 1 metabolism MeSH
- Adaptor Proteins, Signal Transducing MeSH
- Down-Regulation MeSH
- Nuclear Proteins deficiency metabolism MeSH
- Humans MeSH
- Mutation * MeSH
- Tumor Cells, Cultured MeSH
- Tumor Suppressor Protein p53 deficiency genetics metabolism MeSH
- DNA Damage * MeSH
- Cell Cycle Proteins MeSH
- Trans-Activators deficiency metabolism MeSH
- Ultraviolet Rays * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Tumor Suppressor p53-Binding Protein 1 MeSH
- Adaptor Proteins, Signal Transducing MeSH
- Nuclear Proteins MeSH
- MDC1 protein, human MeSH Browser
- Tumor Suppressor Protein p53 MeSH
- Cell Cycle Proteins MeSH
- TP53 protein, human MeSH Browser
- TP53BP1 protein, human MeSH Browser
- Trans-Activators MeSH
Cajal bodies (CBs) are important compartments containing accumulated proteins that preferentially regulate RNA-related nuclear events, including splicing. Here, we studied the nuclear distribution pattern of CBs in neurogenesis. In adult brains, coilin was present at a high density, but CB formation was absent in the nuclei of the choroid plexus of the lateral ventricles. Cells of the adult hippocampus were characterized by a crescent-like morphology of coilin protein. We additionally observed a 70 kDa splice variant of coilin in adult mouse brains, which was different to embryonic brains and mouse pluripotent embryonic stem cells (mESCs), characterized by the 80 kDa standard variant of coilin. Here, we also showed that depletion of coilin is induced during neural differentiation and HDAC1 deficiency in mESCs caused coilin accumulation inside the fibrillarin-positive region of the nucleoli. A similar distribution pattern was observed in adult brain hippocampi, characterized by lower levels of both coilin and HDAC1. In summary, we observed that neural differentiation and HDAC1 deficiency lead to coilin depletion and coilin accumulation in body-like structures inside the nucleoli.
- Publication type
- Journal Article MeSH
The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for self-renewal and their pluripotency. Pluripotent stem cells are able to differentiate into the cells of all three germ layers, and because of this property they represent a promising therapeutic tool in the treatment of diseases such as Parkinson's disease and diabetes, or in the healing of lesions after heart attack. As the basic nuclear unit, chromatin is responsible for the regulation of the functional status of cells, including pluripotency and differentiation. Therefore, in this review we discuss the functional changes in chromatin during differentiation and the correlation between epigenetics events and the differentiation potential of embryonic stem cells. In particular we focus on post-translational histone modification, DNA methylation and the heterochromatin protein HP1 and its unique function in mouse and human embryonic stem cells.
- Keywords
- Chromatin, Differentiation, Embryonic stem cells, Epigenetics, Nucleus, Pluripotency,
- Publication type
- Journal Article MeSH
The nucleolus is a nuclear compartment that plays an important role in ribosome biogenesis. Some structural features and epigenetic patterns are shared between nucleolar and non-nucleolar compartments. For example, the location of transcriptionally active mRNA on extended chromatin loop species is similar to that observed for transcriptionally active ribosomal DNA (rDNA) genes on so-called Christmas tree branches. Similarly, nucleolus organizer region-bearing chromosomes located a distance from the nucleolus extend chromatin fibers into the nucleolar compartment. Specific epigenetic events, such as histone acetylation and methylation and DNA methylation, also regulate transcription of both rRNA- and mRNA-encoding loci. Here, we review the epigenetic mechanisms and structural features that regulate transcription of ribosomal and mRNA genes. We focus on similarities in epigenetic and structural regulation of chromatin in nucleoli and the surrounding non-nucleolar region and discuss the role of proteins, such as heterochromatin protein 1, fibrillarin, nucleolin, and upstream binding factor, in rRNA synthesis and processing.
- MeSH
- Cell Nucleolus genetics metabolism ultrastructure MeSH
- Chromatin genetics ultrastructure MeSH
- Epigenesis, Genetic * MeSH
- Transcription, Genetic MeSH
- Genes, rRNA MeSH
- Histones metabolism MeSH
- Humans MeSH
- RNA, Messenger genetics MeSH
- DNA, Ribosomal genetics MeSH
- Ribosomes genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Comparative Study MeSH
- Names of Substances
- Chromatin MeSH
- Histones MeSH
- RNA, Messenger MeSH
- DNA, Ribosomal MeSH