Most cited article - PubMed ID 18953340
TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
- MeSH
- Phenotype * MeSH
- Humans MeSH
- Membrane Proteins genetics metabolism MeSH
- DNA, Mitochondrial genetics MeSH
- Mitochondrial Diseases genetics enzymology MeSH
- Mitochondrial Proteins genetics metabolism MeSH
- Mitochondrial Proton-Translocating ATPases * genetics metabolism MeSH
- Mitochondria enzymology genetics MeSH
- Mutation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Systematic Review MeSH
- Names of Substances
- Membrane Proteins MeSH
- DNA, Mitochondrial MeSH
- Mitochondrial Proteins MeSH
- Mitochondrial Proton-Translocating ATPases * MeSH
- TMEM70 protein, human MeSH Browser
Life manifests as growth, movement or heat production that occurs thanks to the energy accepted from the outside environment. The basis of energy transduction attracted the Czech researchers since the beginning of the 20th century. It further accelerated after World War II, when the new Institute of Physiology was established in 1954. When it was found that energy is stored in the form of adenosine triphosphate (ATP) that can be used by numerous reactions as energy source and is produced in the process called oxidative phosphorylation localized in mitochondria, the investigation focused on this cellular organelle. Although the Czech scientists had to overcome various obstacles including Communist party leadership, driven by curiosity, boldness, and enthusiasm, they characterized broad spectrum of mitochondrial properties in different tissues in (patho)physiological conditions in collaboration with many world-known laboratories. The current review summarizes the contribution of the Czech scientists to the bioenergetic and mitochondrial research in the global context. Keywords: Mitochondria, Bioenergetics, Chemiosmotic coupling.
- MeSH
- Biomedical Research history trends MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Energy Metabolism * MeSH
- Humans MeSH
- Mitochondria * metabolism MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
- Geographicals
- Czech Republic MeSH
Mutations of the TMEM70 gene disrupt the biogenesis of the ATP synthase and represent the most frequent cause of autosomal recessive encephalo-cardio-myopathy with neonatal onset. Patient tissues show isolated defects in the ATP synthase, leading to the impaired mitochondrial synthesis of ATP and insufficient energy provision. In the current study, we tested the efficiency of gene complementation by using a transgenic rescue approach in spontaneously hypertensive rats with the targeted Tmem70 gene (SHR-Tmem70ko/ko), which leads to embryonic lethality. We generated SHR-Tmem70ko/ko knockout rats expressing the Tmem70 wild-type transgene (SHR-Tmem70ko/ko,tg/tg) under the control of the EF-1α universal promoter. Transgenic rescue resulted in viable animals that showed the variable expression of the Tmem70 transgene across the range of tissues and only minor differences in terms of the growth parameters. The TMEM70 protein was restored to 16-49% of the controls in the liver and heart, which was sufficient for the full biochemical complementation of ATP synthase biogenesis as well as for mitochondrial energetic function in the liver. In the heart, we observed partial biochemical complementation, especially in SHR-Tmem70ko/ko,tg/0 hemizygotes. As a result, this led to a minor impairment in left ventricle function. Overall, the transgenic rescue of Tmem70 in SHR-Tmem70ko/ko knockout rats resulted in the efficient complementation of ATP synthase deficiency and thus in the successful genetic treatment of an otherwise fatal mitochondrial disorder.
- Keywords
- ATP synthase deficiency, TMEM70 factor, gene therapy, mitochondria disease, transgenic rescue,
- Publication type
- Journal Article MeSH
Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.
OBJECTIVES: TMEM70 deficiency is the most common nuclear-encoded defect affecting the ATP synthase. In this multicentre retrospective study we characterise the natural history of the disease, treatment and outcome in 48 patients with mutations in TMEM70. Eleven centers from eight European countries, Turkey and Israel participated. RESULTS: All 27 Roma and eight non-Roma patients were homozygous for the common mutation c.317-2A > G. Five patients were compound heterozygotes for the common mutation and mutations c.470 T > A, c.628A > C, c.118_119insGT or c.251delC. Six Arab Muslims and two Turkish patients were homozygous for mutations c.238C > T, c.316 + 1G > T, c.336 T > A, c.578_579delCA, c.535C > T, c.359delC. Age of onset was neonatal in 41 patients, infantile in six cases and two years in one child. The most frequent symptoms at onset were poor feeding, hypotonia, lethargy, respiratory and heart failure, accompanied by lactic acidosis, 3-methylglutaconic aciduria and hyperammonaemia. Symptoms further included: developmental delay (98%), hypotonia (95%), faltering growth (94%), short stature (89%), non-progressive cardiomyopathy (89%), microcephaly (71%), facial dysmorphism (66%), hypospadias (50% of the males), persistent pulmonary hypertension of the newborn (22%) and Wolff-Parkinson-White syndrome (13%). One or more acute metabolic crises occurred in 24 surviving children, frequently followed by developmental regression. Hyperammonaemic episodes responded well to infusion with glucose and lipid emulsion, and ammonia scavengers or haemodiafiltration. Ten-year survival was 63%, importantly for prognostication, no child died after the age of five years. CONCLUSION: TMEM70 deficiency is a panethnic, multisystemic disease with variable outcome depending mainly on adequate management of hyperammonaemic crises in the neonatal period and early childhood.
- MeSH
- Acidosis, Lactic genetics MeSH
- Child MeSH
- Adult MeSH
- Heterozygote MeSH
- Homozygote MeSH
- Hyperammonemia genetics MeSH
- Kaplan-Meier Estimate MeSH
- Cardiomyopathies genetics MeSH
- Infant MeSH
- Muscle, Skeletal pathology MeSH
- Humans MeSH
- Disease Management MeSH
- Membrane Proteins deficiency genetics MeSH
- Mitochondrial Proteins deficiency genetics MeSH
- Adolescent MeSH
- Young Adult MeSH
- Mutation MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Retrospective Studies MeSH
- Metabolism, Inborn Errors genetics MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- Israel MeSH
- Turkey MeSH
- Names of Substances
- Membrane Proteins MeSH
- Mitochondrial Proteins MeSH
- TMEM70 protein, human MeSH Browser
BACKGROUND: Mitochondrial diseases belong to the most severe inherited metabolic disorders affecting pediatric population. Despite detailed knowledge of mtDNA mutations and progress in identification of affected nuclear genes, diagnostics of a substantial part of mitochondrial diseases relies on clinical symptoms and biochemical data from muscle biopsies and cultured fibroblasts. METHODS: To investigate manifestation of oxidative phosphorylation defects in isolated lymphocytes, digitonin-permeabilized cells from 48 children were analyzed by high resolution respirometry, cytofluorometric detection of mitochondrial membrane potential and immunodetection of respiratory chain proteins with SDS and Blue Native electrophoreses. RESULTS: Evaluation of individual respiratory complex activities, ATP synthesis, kinetic parameters of mitochondrial respiratory chain and the content and subunit composition of respiratory chain complexes enabled detection of inborn defects of respiratory complexes I, IV and V within 2 days. Low respiration with NADH-dependent substrates and increased respiration with glycerol-3-phosphate revealed complex I defects; changes in p 50 for oxygen and elevated uncoupling control ratio pointed to complex IV deficiency due to SURF1 or SCO2 mutation; high oligomycin sensitivity of state 3-ADP respiration, upregulated mitochondrial membrane potential and low content of complex V were found in lymphocytes with ATP synthase deficiency due to TMEM70 mutations. CONCLUSION: Based on our results, we propose the best biochemical parameters predictive for defects of respiratory complexes I, IV and V manifesting in peripheral blood lymphocytes. GENERAL SIGNIFICANCE: The noninvasiveness, reliability and speed of an approach utilizing novel biochemical criteria demonstrate the high potential of isolated lymphocytes for diagnostics of oxidative phosphorylation disorders in pediatric patients.
- Keywords
- AA, antimycin A, BNE, Blue Native PAGE, COX, cytochrome c oxidase, Diagnostics, FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, GP, glycerol-3-phosphate, GPDH, mitochondrial FAD-dependent glycerophosphate dehydrogenase, Lymphocytes, Mitochondrial diseases, OXPHOS, oxidative phosphorylation, Oxidative phosphorylation, PAGE, polyacrylamide gel electrophoresis, Respirometry, TMPD, tetramethylphenylenediamine, TMRM, tetramethylrhodamine methyl ester, cI–cV, respiratory chain complexes I–V, s3, state 3-ADP, s3u, state 3-uncoupled, s4o, state 4-oligomycin, ΔΨm, mitochondrial membrane potential,
- Publication type
- Journal Article MeSH