Nejvíce citovaný článek - PubMed ID 19358889
Preparation of a biologically active apo-cytochrome b5 via heterologous expression in Escherichia coli
Residue-specific incorporation of non-canonical amino acids (ncAAs) introduces bio-orthogonal functionalities into proteins. As such, this technique is applied in protein characterization and quantification. Here, we studied protein expression with three methionine analogs, namely photo-methionine (pMet), azidohomoalanine (Aha) and homopropargylglycine (Hpg), in prototrophic E. coli BL-21 and auxotrophic E. coli B834 to maximize ncAA content, thereby assessing the effect of ncAAs on bacterial growth and the expression of cytochrome b5 (b5M46), green fluorescence protein (MBP-GFP) and phage shock protein A. In auxotrophic E. coli, ncAA incorporation ranged from 50 to 70% for pMet and reached approximately 50% for Aha, after 26 h expression, with medium and low expression levels of MBP-GFP and b5M46, respectively. In the prototrophic strain, by contrast, the protein expression levels were higher, albeit with a sharp decrease in the ncAA content after the first hours of expression. Similar expression levels and 70-80% incorporation rates were achieved in both bacterial strains with Hpg. Our findings provide guidance for expressing proteins with a high content of ncAAs, highlight pitfalls in determining the levels of methionine replacement by ncAAs by MALDI-TOF mass spectrometry and indicate a possible systematic bias in metabolic labeling techniques using Aha or Hpg.
- Klíčová slova
- E. coli, azidohomoalanine, bio-orthogonal amino acid global substitution, homopropargylglycine, non-canonical amino-acid-containing proteins, photo-methionine,
- MeSH
- alanin MeSH
- aminokyseliny metabolismus MeSH
- Escherichia coli * genetika metabolismus MeSH
- methionin * metabolismus MeSH
- proteiny chemie MeSH
- Racemethionin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alanin MeSH
- aminokyseliny MeSH
- azidohomoalanine MeSH Prohlížeč
- homopropargylglycine MeSH Prohlížeč
- methionin * MeSH
- proteiny MeSH
- Racemethionin MeSH
ABSTRACT: Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. Here we investigated the efficiencies of rat hepatic microsomes and rat recombinant CYP1A1 expressed with its reductase, NADPH:CYP oxidoreductase (POR), NADH:cytochrome b5 reductase, epoxide hydrolase and/or cytochrome b5 in Supersomes™ to metabolize this carcinogen. We also studied the effectiveness of coenzymes of two of the microsomal reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of NADH:cytochrome b5 reductase, to mediate BaP metabolism in these systems. Up to eight BaP metabolites and two DNA adducts were generated by the systems, both in the presence of NADPH and NADH. Among BaP metabolites, BaP-9,10-dihydrodiol, BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, and a metabolite of unknown structure were formed by hepatic microsomes and rat CYP1A1. One of two DNA adducts formed by examined enzymatic systems (rat hepatic microsomes and rat CYP1A1) was characterized to be 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (dG-N2-BPDE), while another adduct has similar chromatographic properties on polyethylaneimine-cellulose thin layer chromatography to a guanine adduct derived from reaction with 9-hydroxy-BaP-4,5-oxide. In the presence of either of the reductase cofactors tested, NADPH or NADH, cytochrome b5 stimulated CYP1A1-mediated formation of both BaP-DNA adducts. The results demonstrate that NADH can act as a sole electron donor for both the first and the second reduction of CYP1A1 during its reaction cycle catalyzing oxidation of BaP, and suggest that the NADH:cytochrome b5 reductase as the NADH-dependent reductase might substitute POR in this enzymatic system.
- Klíčová slova
- Coenzymes, DNA, Enzymes, High-pressure liquid chromatography,
- Publikační typ
- časopisecké články MeSH
ABSTRACT: The microsomal protein cytochrome b5 , which is located in the membrane of the endoplasmic reticulum, has been shown to modulate many reactions catalyzed by cytochrome P450 (CYP) enzymes. We investigated the influence of exposure to the anticancer drug ellipticine and to two environmental carcinogens, benzo[a]pyrene (BaP) and 1-phenylazo-2-naphthol (Sudan I), on the expression of cytochrome b5 in livers of rats, both at the mRNA and protein levels. We also studied the effects of these compounds on their own metabolism and the formation of DNA adducts generated by their activation metabolite(s) in vitro. The relative amounts of cytochrome b5 mRNA, measured by real-time polymerase chain reaction analysis, were induced by the test compounds up to 11.7-fold in rat livers. Western blotting using antibodies raised against cytochrome b5 showed that protein expression was induced by up to sevenfold in livers of treated rats. Microsomes isolated from livers of exposed rats catalyzed the oxidation of ellipticine, BaP, and Sudan I and the formation of DNA adducts generated by their reactive metabolite(s) more effectively than hepatic microsomes isolated from control rats. All test compounds are known to induce CYP1A1. This induction is one of the reasons responsible for increased oxidation of these xenobiotics by microsomes. However, induction of cytochrome b5 can also contribute to their enhanced metabolism.
- Klíčová slova
- DNA, Drug research, Enzymes, High pressure liquid chromatography,
- Publikační typ
- časopisecké články MeSH
Aristolochic acid I (AAI) is a plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is detoxified by cytochrome P450 (CYP)-mediated O-demethylation to 8-hydroxyaristolochic acid I (aristolochic acid Ia, AAIa). We previously investigated the efficiencies of human and rat CYPs in the presence of two other components of the mixed-functions-oxidase system, NADPH:CYP oxidoreductase and cytochrome b₅, to oxidize AAI. Human and rat CYP1A are the major enzymes oxidizing AAI. Other CYPs such as CYP2C, 3A4, 2D6, 2E1, and 1B1, also form AAIa, but with much lower efficiency than CYP1A. Based on velocities of AAIa formation by examined CYPs and their expression levels in human and rat livers, here we determined the contributions of individual CYPs to AAI oxidation in these organs. Human CYP1A2 followed by CYP2C9, 3A4 and 1A1 were the major enzymes contributing to AAI oxidation in human liver, while CYP2C and 1A were most important in rat liver. We employed flexible in silico docking methods to explain the differences in AAI oxidation in the liver by human CYP1A1, 1A2, 2C9, and 3A4, the enzymes that all O-demethylate AAI, but with different effectiveness. We found that the binding orientations of the methoxy group of AAI in binding centers of the CYP enzymes and the energies of AAI binding to the CYP active sites dictate the efficiency of AAI oxidation. Our results indicate that utilization of experimental and theoretical methods is an appropriate study design to examine the CYP-catalyzed reaction mechanisms of AAI oxidation and contributions of human hepatic CYPs to this metabolism.
- Klíčová slova
- contribution of cytochromes P450 in detoxification of aristolochic acid I in human and rat livers, cytochrome P450-mediated detoxification of aristolochic acid I, molecular modeling, plant nephrotoxin and carcinogen aristolochic acid I,
- MeSH
- inhibitory cytochromu P450 farmakologie MeSH
- jaterní mikrozomy účinky léků metabolismus MeSH
- játra účinky léků metabolismus MeSH
- katalytická doména MeSH
- katalýza MeSH
- krysa rodu Rattus MeSH
- kyseliny aristolochové škodlivé účinky chemie metabolismus MeSH
- lidé MeSH
- metabolická aktivace MeSH
- metabolická inaktivace MeSH
- metylace účinky léků MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- nemoci ledvin etiologie metabolismus MeSH
- oxidace-redukce účinky léků MeSH
- systém (enzymů) cytochromů P-450 chemie metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aristolochic acid I MeSH Prohlížeč
- inhibitory cytochromu P450 MeSH
- kyseliny aristolochové MeSH
- systém (enzymů) cytochromů P-450 MeSH
Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models.
- MeSH
- antitumorózní látky farmakologie MeSH
- cytochrom P-450 CYP1A1 nedostatek genetika metabolismus MeSH
- elipticiny farmakologie MeSH
- hepatocyty účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- myši MeSH
- poškození DNA * MeSH
- rozpřahující látky farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- cytochrom P-450 CYP1A1 MeSH
- elipticiny MeSH
- ellipticine MeSH Prohlížeč
- rozpřahující látky MeSH