Nejvíce citovaný článek - PubMed ID 11755121
The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts
The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.
- Klíčová slova
- Cytochrome P450, Cytochrome b(5), DNA Adducts, Metabolism, Mouse models,
- MeSH
- adukty DNA metabolismus MeSH
- antitumorózní látky metabolismus farmakologie MeSH
- aromatické hydroxylasy metabolismus MeSH
- cytochrom P-450 CYP3A MeSH
- cytochrom-B(5)-reduktasa nedostatek genetika MeSH
- cytochromy b5 nedostatek genetika MeSH
- elipticiny metabolismus farmakologie MeSH
- fenotyp MeSH
- genotyp MeSH
- hepatocyty enzymologie MeSH
- jaterní mikrozomy enzymologie MeSH
- játra enzymologie MeSH
- metabolická aktivace MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- antitumorózní látky MeSH
- aromatické hydroxylasy MeSH
- CYP3A protein, mouse MeSH Prohlížeč
- cytochrom P-450 CYP3A MeSH
- cytochrom-B(5)-reduktasa MeSH
- cytochromy b5 MeSH
- elipticiny MeSH
- ellipticine MeSH Prohlížeč
- NADPH-cytochrom c-reduktasa MeSH
- systém (enzymů) cytochromů P-450 MeSH
ABSTRACT: Ellipticine is an anticancer agent that forms covalent DNA adducts after enzymatic activation by cytochrome P450 (CYP) enzymes, mainly by CYP3A4. This process is one of the most important ellipticine DNA-damaging mechanisms for its antitumor action. Here, we investigated the efficiencies of human hepatic microsomes and human recombinant CYP3A4 expressed with its reductase, NADPH:CYP oxidoreductase (POR), NADH:cytochrome b5 reductase and/or cytochrome b5 in Supersomes™ to oxidize this drug. We also evaluated the effectiveness of coenzymes of two of the microsomal reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of NADH:cytochrome b5 reductase, to mediate ellipticine oxidation in these enzyme systems. Using HPLC analysis we detected up to five ellipticine metabolites, which were formed by human hepatic microsomes and human CYP3A4 in the presence of NADPH or NADH. Among ellipticine metabolites, 9-hydroxy-, 12-hydroxy-, and 13-hydroxyellipticine were formed by hepatic microsomes as the major metabolites, while 7-hydroxyellipticine and the ellipticine N2-oxide were the minor ones. Human CYP3A4 in Supersomes™ generated only three metabolic products, 9-hydroxy-, 12-hydroxy-, and 13-hydroxyellipticine. Using the 32P-postlabeling method two ellipticine-derived DNA adducts were generated by microsomes and the CYP3A4-Supersome system, both in the presence of NADPH and NADH. These adducts were derived from the reaction of 13-hydroxy- and 12-hydroxyellipticine with deoxyguanosine in DNA. In the presence of NADPH or NADH, cytochrome b5 stimulated the CYP3A4-mediated oxidation of ellipticine, but the stimulation effect differed for individual ellipticine metabolites. This heme protein also stimulated the formation of both ellipticine-DNA adducts. The results demonstrate that cytochrome b5 plays a dual role in the CYP3A4-catalyzed oxidation of ellipticine: (1) cytochrome b5 mediates CYP3A4 catalytic activities by donating the first and second electron to this enzyme in its catalytic cycle, indicating that NADH:cytochrome b5 reductase can substitute NADPH-dependent POR in this enzymatic reaction and (2) cytochrome b5 can act as an allosteric modifier of the CYP3A4 oxygenase.
- Klíčová slova
- Coenzymes, DNA, Enzymes, High pressure liquid chromatography,
- Publikační typ
- časopisecké články MeSH
ABSTRACT: Cytochrome P450 (CYP) 2S1 is "orphan" CYP that is overexpressed in several epithelial tissues and many human tumors. The pure enzyme is required for better understanding of its biological functions. Therefore, human CYP2S1 was considered to be prepared by the gene manipulations and heterologous expression in Escherichia coli. Here, the conditions suitable for efficient expression of human CYP2S1 protein from plasmid pCW containing the human CYP2S1 gene were optimized and the enzyme purified to homogeneity. The identity of CYP2S1 as the product of heterologous expression was confirmed by dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. To confirm the presence of the enzymatically active CYP2S1, the CO spectrum of purified CYP2S1 was recorded. Since CYP2S1 was shown to catalyze oxidation of compounds having polycyclic aromatic structures, the prepared enzyme has been tested to metabolize the compounds having this structural character; namely, the human carcinogen benzo[a]pyrene (BaP), its 7,8-dihydrodiol derivative, and an anticancer drug ellipticine. Reaction mixtures contained besides the test compounds the CYP2S1 enzyme reconstituted with NADPH:CYP reductase (POR) in liposomes, and/or this CYP in the presence of cumene hydroperoxide or hydrogen peroxide. High performance liquid chromatography was employed for separation of BaP, BaP-7,8-dihydrodiol, and ellipticine metabolites. The results found in this study demonstrate that CYP2S1 in the presence of cumene hydroperoxide or hydrogen peroxide catalyzes oxidation of two of the test xenobiotics, a metabolite of BaP, BaP-7,8-dihydrodiol, and ellipticine. Whereas BaP-7,8,9,10-tetrahydrotetrol was formed as a product of BaP-7,8-dihydrodiol oxidation, ellipticine was oxidized to 12-hydroxyellipticine, 13-hydroxyellipticine, and the ellipticine N2-oxide.
- Klíčová slova
- Coenzymes, Enzymes, High pressure liquid chromatography,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H: quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using (32)P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast, the formation of AAI-DNA adducts was catalyzed by CYP1B1 with the A133S mutation. Our experimental model confirms the importance of the hydroxyl group possessing amino acids in the active center of CYP1A1 and 1A2 for AAI nitroreduction.
- Klíčová slova
- 1A2 and 1B1, DNA adduct formation, aristolochic acid I, aristolochic acid nephropathy, nitroreduction, site-directed mutagenesis of cytochromes P450 1A1,
- MeSH
- adukty DNA metabolismus MeSH
- aromatické hydroxylasy genetika metabolismus MeSH
- cytochrom P-450 CYP1A1 MeSH
- cytochrom P-450 CYP1A2 MeSH
- cytochrom P450 CYP1B1 MeSH
- katalytická doména genetika MeSH
- katalýza MeSH
- kyseliny aristolochové metabolismus MeSH
- lidé MeSH
- mutace * MeSH
- mutageneze cílená MeSH
- oxidace-redukce MeSH
- rekombinantní proteiny MeSH
- substrátová specifita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- aristolochic acid I MeSH Prohlížeč
- aromatické hydroxylasy MeSH
- cytochrom P-450 CYP1A1 MeSH
- cytochrom P-450 CYP1A2 MeSH
- cytochrom P450 CYP1B1 MeSH
- kyseliny aristolochové MeSH
- rekombinantní proteiny MeSH
ABSTRACT: The microsomal protein cytochrome b5 , which is located in the membrane of the endoplasmic reticulum, has been shown to modulate many reactions catalyzed by cytochrome P450 (CYP) enzymes. We investigated the influence of exposure to the anticancer drug ellipticine and to two environmental carcinogens, benzo[a]pyrene (BaP) and 1-phenylazo-2-naphthol (Sudan I), on the expression of cytochrome b5 in livers of rats, both at the mRNA and protein levels. We also studied the effects of these compounds on their own metabolism and the formation of DNA adducts generated by their activation metabolite(s) in vitro. The relative amounts of cytochrome b5 mRNA, measured by real-time polymerase chain reaction analysis, were induced by the test compounds up to 11.7-fold in rat livers. Western blotting using antibodies raised against cytochrome b5 showed that protein expression was induced by up to sevenfold in livers of treated rats. Microsomes isolated from livers of exposed rats catalyzed the oxidation of ellipticine, BaP, and Sudan I and the formation of DNA adducts generated by their reactive metabolite(s) more effectively than hepatic microsomes isolated from control rats. All test compounds are known to induce CYP1A1. This induction is one of the reasons responsible for increased oxidation of these xenobiotics by microsomes. However, induction of cytochrome b5 can also contribute to their enhanced metabolism.
- Klíčová slova
- DNA, Drug research, Enzymes, High pressure liquid chromatography,
- Publikační typ
- časopisecké články MeSH
Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models.
- MeSH
- antitumorózní látky farmakologie MeSH
- cytochrom P-450 CYP1A1 nedostatek genetika metabolismus MeSH
- elipticiny farmakologie MeSH
- hepatocyty účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- myši MeSH
- poškození DNA * MeSH
- rozpřahující látky farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- cytochrom P-450 CYP1A1 MeSH
- elipticiny MeSH
- ellipticine MeSH Prohlížeč
- rozpřahující látky MeSH
The requirements for early diagnostics as well as effective treatment of cancer diseases have increased the pressure on development of efficient methods for targeted drug delivery as well as imaging of the treatment success. One of the most recent approaches covering the drug delivery aspects is benefitting from the unique properties of nanomaterials. Ellipticine and its derivatives are efficient anticancer compounds that function through multiple mechanisms. Formation of covalent DNA adducts after ellipticine enzymatic activation is one of the most important mechanisms of its pharmacological action. In this study, we investigated whether ellipticine might be released from its micellar (encapsulated) form to generate covalent adducts analogous to those formed by free ellipticine. The (32)P-postlabeling technique was used as a useful imaging method to detect and quantify covalent ellipticine-derived DNA adducts. We compared the efficiencies of free ellipticine and its micellar form (the poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PAGE-PEO) block copolymer, P 119 nanoparticles) to form ellipticine-DNA adducts in rats in vivo. Here, we demonstrate for the first time that treatment of rats with ellipticine in micelles resulted in formation of ellipticine-derived DNA adducts in vivo and suggest that a gradual release of ellipticine from its micellar form might produce the enhanced permeation and retention effect of this ellipticine-micellar delivery system.
- MeSH
- adukty DNA chemie metabolismus MeSH
- antitumorózní látky aplikace a dávkování chemie farmakokinetika MeSH
- elipticiny aplikace a dávkování chemie farmakokinetika MeSH
- krysa rodu Rattus MeSH
- metabolická clearance MeSH
- micely MeSH
- orgánová specificita MeSH
- potkani Wistar MeSH
- příprava léků metody MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- antitumorózní látky MeSH
- elipticiny MeSH
- ellipticine MeSH Prohlížeč
- micely MeSH
Ellipticine is a potent antineoplastic agent exhibiting multiple mechanisms of action. This anticancer agent should be considered a pro-drug, whose pharmacological efficiency and/or genotoxic side effects are dependent on its cytochrome P450 (CYP)- and/or peroxidase-mediated activation to species forming covalent DNA adducts. Ellipticine can also act as an inhibitor or inducer of biotransformation enzymes, thereby modulating its own metabolism leading to its genotoxic and pharmacological effects. Here, a comparison of the toxicity of ellipticine to human breast adenocarcinoma MCF-7 cells, leukemia HL-60 and CCRF-CEM cells, neuroblastoma IMR-32, UKF-NB-3 and UKF-NB-4 cells and U87MG glioblastoma cells and mechanisms of its action to these cells were evaluated. Treatment of all cells tested with ellipticine resulted in inhibition of cell growth and proliferation. This effect was associated with formation of two covalent ellipticine-derived DNA adducts, identical to those formed by 13-hydroxy- and 12-hydroxyellipticine, the ellipticine metabolites generated by CYP and peroxidase enzymes, in MCF-7, HL-60, CCRF-CEM, UKF-NB-3, UKF-NB-4 and U87MG cells, but not in neuroblastoma UKF-NB-3 cells. Therefore, DNA adduct formation in most cancer cell lines tested in this comparative study might be the predominant cause of their sensitivity to ellipticine treatment, whereas other mechanisms of ellipticine action also contribute to its cytotoxicity to neuroblastoma UKF-NB-3 cells.
- Klíčová slova
- DNA adducts, Ellipticine, cancer cell lines, mechanims of acticancer effects of ellipticine,
- Publikační typ
- časopisecké články MeSH
Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most frequent solid extra cranial tumor in children and is a major cause of death from neoplasia in infancy. Still little improvement in therapeutic options has been made, requiring a need for the development of new therapies. In our laboratory, we address still unsettled questions, which of mechanisms of action of DNA-damaging drugs both currently use for treatment of human neuroblastomas (doxorubicin, cis-platin, cyclophosphamide and etoposide) and another anticancer agent decreasing growth of neuroblastomas in vitro, ellipticine, are predominant mechanism(s) responsible for their antitumor action in neuroblastoma cell lines in vitro. Because hypoxia frequently occurs in tumors and strongly correlates with advanced disease and poor outcome caused by chemoresistance, the effects of hypoxia on efficiencies and mechanisms of actions of these drugs in neuroblastomas are also investigated. Since the epigenetic structure of DNA and its lesions play a role in the origin of human neuroblastomas, pharmaceutical manipulation of the epigenome may offer other treatment options also for neuroblastomas. Therefore, the effects of histone deacetylase inhibitors on growth of neuroblastoma and combination of these compounds with doxorubicin, cis-platin, etoposide and ellipticine as well as mechanisms of such effects in human neuroblastona cell lines in vitro are also investigated. Such a study will increase our knowledge to explain the proper function of these drugs on the molecular level, which should be utilized for the development of new therapies for neuroblastomas.
- Klíčová slova
- DNA-damaging anticancer drugs, inhibitors of histone deacetylases, mechanisms of acticancer effects of drugs, neuroblastoma,
- Publikační typ
- časopisecké články MeSH
Two compounds known to covalently bind to DNA after their activation with cytochromes P450 (CYPs), carcinogenic benzo(a)pyrene (BaP) and an antineoplastic agent ellipticine, were investigated for their potential to induce CYP and NADPH:CYP reductase (POR) enzymes in rodent livers, the main target organ for DNA adduct formation. Two animal models were used in the study: (i) rats as animals mimicking the fate of ellipticine in humans and (ii) mice, especially wild-type (WT) and hepatic POR null (HRN™) mouse lines. Ellipticine and BaP induce expression of CYP1A enzymes in livers of experimental models, which leads to increase in their enzymatic activity. In addition, both compounds are capable of generating DNA adducts, predominantly in livers of studied organisms. As determined by (32)P postlabelling analysis, levels of ellipticine-derived DNA adducts formed in vivo in the livers of HRN™ mice were reduced (by up to 65%) relative to levels in WT mice, indicating that POR mediated CYP enzyme activity is important for the activation of ellipticine. In contrast to these results, 6.4 fold higher DNA binding of BaP was observed in the livers of HRN™ mice than in WT mice. This finding suggests a detoxication role of CYP1A in BaP metabolism in vivo. In in vitro experiments, DNA adduct formation in calf thymus DNA was up to 25 fold higher in incubations of ellipticine or BaP with microsomes from pretreated animals than with controls. This stimulation effect was attributed to induction of CYP1A1/2 enzymes, which are responsible for oxidative activation of both compounds to the metabolites generating major DNA adducts in vitro. Taken together, these results demonstrate that by inducing CYP1A1/2, ellipticine and BaP modulate their own enzymatic metabolic activation and detoxication, thereby modulating their either pharmacological (ellipticine) and/or genotoxic potential (both compounds).
- Klíčová slova
- HRN™ mice, NADPH:cytochrome P450 reductase, benzo(a)pyrene, cytochromes P450, ellipticine, induction,
- Publikační typ
- časopisecké články MeSH