Nejvíce citovaný článek - PubMed ID 19447210
Due to the bio-inert nature of titanium (Ti) and subsequent accompanying chronic inflammatory response, an implant's stability and function can be significantly affected, which is why various surface modifications have been employed, including the deposition of titanium oxide (TiO2) nanotubes (TNTs) onto the native surface through the anodic oxidation method. While the influence of nanotube diameter on cell behaviour and osteogenesis is very well documented, information regarding the effects of nanotube lateral spacing on the in vivo new bone formation process is insufficient and hard to find. Considering this, the present study's aim was to evaluate the mechanical properties and the osteogenic ability of two types of TNTs-based pins with different lateral spacing, e.g., 25 nm (TNTs) and 92 nm (spTNTs). The mechanical properties of the TNT-coated implants were characterised from a morphological point of view (tube diameter, spacing, and tube length) using scanning electron microscopy (SEM). In addition, the chemical composition of the implants was evaluated using X-ray photoelectron spectroscopy, while surface roughness and topography were characterised using atomic force microscopy (AFM). Finally, the implants' hardness and elastic modulus were investigated using nanoindentation measurements. The in vivo new bone formation was histologically evaluated (haematoxylin and eosin-HE staining) at 6 and 30 days post-implantation in a rat model. Mechanical characterisation revealed that the two morphologies presented a similar chemical composition and mechanical strength, but, in terms of surface roughness, the spTNTs exhibited a higher average roughness. The microscopic examination at 1 month post-implantation revealed that spTNTs pins (57.21 ± 34.93) were capable of promoting early new bone tissue formation to a greater extent than the TNTs-coated implants (24.37 ± 6.5), with a difference in the average thickness of the newly formed bone tissue of ~32.84 µm, thus highlighting the importance of this parameter when designing future dental/orthopaedic implants.
- Klíčová slova
- TiO2 nanotubes, in vivo new bone formation, intertube spacing, nanotopographic surfaces, osteoblasts,
- Publikační typ
- časopisecké články MeSH
The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO2) and vanadium pentoxide (V2O5) on osteoblastic MG-63 cells grown on TiO2 nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study. The MG-63 cell growth and proliferation after 48 h of incubation on hybrid TNTs/ZrO2 and TNTs/V2O5 surfaces was evaluated in comparison to the uncoated TNTs of each diameter. The density of viable MG-63 cells was assessed for all the TNT surfaces, along with the cell morphology and the spreading behavior (i.e., the cell length). The ultrathin coatings retained the original morphology of the TNTs but changed the surface chemical composition, wettability, and cell behavior, whose interplay is the subject of the present investigation. These findings offer interesting views on the influence of the composition of biomedical implant surfaces, triggered by ALD ultrathin coatings on them. The outcomes of this work shed light on the assessment of the biocompatibility of the two different ALD coatings.
- Klíčová slova
- MG-63, TiO2 nanotube layers, ZrO2, V2O5, atomic layer deposition, cell viability.,
- MeSH
- biokompatibilní potahované materiály * chemie farmakologie MeSH
- buněčné linie MeSH
- elektrody MeSH
- lidé MeSH
- nanotrubičky * chemie MeSH
- osteoblasty * účinky léků cytologie MeSH
- povrchové vlastnosti MeSH
- proliferace buněk * účinky léků MeSH
- sloučeniny vanadu chemie farmakologie MeSH
- titan * chemie farmakologie MeSH
- zirkonium * chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- biokompatibilní potahované materiály * MeSH
- sloučeniny vanadu MeSH
- titan * MeSH
- titanium dioxide MeSH Prohlížeč
- vanadium pentoxide MeSH Prohlížeč
- zirconium oxide MeSH Prohlížeč
- zirkonium * MeSH
The success of implant treatment is dependent on the osseointegration of the implant. The main goal of this work was to improve the biofunctionality of the Ti-13Nb-13Zr implant alloy by the production of oxide nanotubes (ONTs) layers for better anchoring in the bone and use as an intelligent carrier in drug delivery systems. Anodization of the Ti-13Nb-13Zr alloy was carried out in 0.5% HF, 1 M (NH4)2SO4 + 2% NH4F, and 1 M ethylene glycol + 4 wt.% NH4F electrolytes. Physicochemical characteristics of ONTs were performed by high-resolution electron microscopy (HREM), X-ray photoelectron spectroscopy (XPS), and scanning Kelvin probe (SKP). Water contact angle studies were conducted using the sitting airdrop method. In vitro biological properties and release kinetics of ibuprofen were investigated. The results of TEM and XPS studies confirmed the formation of the single-walled ONTs of three generations on the bi-phase (α + β) Ti-13Nb-13Zr alloy. The ONTs were composed of oxides of the alloying elements. The proposed surface modification method ensured good hemolytic properties, no cytotoxity for L-929 mouse cells, good adhesion, increased surface wettability, and improved athrombogenic properties of the Ti-13Nb-13Zr alloy. Nanotubular surfaces allowed ibuprofen to be released from the polymer matrix according to the Gallagher-Corrigan model.
- Klíčová slova
- Ti-13Nb-13Zr alloy, anodization, athrombogenity, biological activity, biomaterials, drug delivery system, oxide nanotubes,
- Publikační typ
- časopisecké články MeSH
The formation of nanostructures on titanium implant surfaces is a promising strategy to modulate cell adhesion and differentiation, which are crucial for future application in bone regeneration. The aim of this study was to investigate how the nanotube diameter and/or nanomechanical properties alter human osteoblast like cell (Saos-2) adhesion, growth and osteogenic differentiation in vitro. Nanotubes, with diameters ranging from 24 to 66 nm, were fabricated on a commercially pure titanium (cpTi) surface using anodic oxidation with selected end potentials of 10 V, 15 V and 20 V. The cell response was studied in vitro on untreated and nanostructured samples using a measurement of metabolic activity, cell proliferation, alkaline phosphatase activity and qRT-PCR, which was used for the evaluation of osteogenic marker expression (collagen type I, osteocalcin, RunX2). Early cell adhesion was investigated using SEM and ELISA. Adhesive molecules (vinculin, talin), collagen and osteocalcin were also visualized using confocal microscopy. Moreover, the reduced elastic modulus and indentation hardness of nanotubes were assessed using a TriboIndenter™. Smooth and nanostructured cpTi both supported cell adhesion, proliferation and bone-specific mRNA expression. The nanotubes enhanced collagen type I and osteocalcin synthesis, compared to untreated cpTi, and the highest synthesis was observed on samples modified with 20 V nanotubes. Significant differences were found in the cell adhesion, where the vinculin and talin showed a dot-like distribution. Both the lowest reduced elastic modulus and indentation hardness were assessed from 20 V samples. The nanotubes of mainly 20 V samples showed a high potential for their use in bone implantation.
- Publikační typ
- časopisecké články MeSH
Selenium nanoparticle modified surfaces attract increasing attention in the field of tissue engineering. Selenium exhibits strong anticancer, antibacterial and anti-inflammatory properties and it maintains relatively low off-target cytotoxicity. In our paper, we present the fabrication, characterization and cytocompatibility of titanium oxide (TiO2) nanotube surface decorated with various surface densities of chemically synthesized selenium nanoparticles. To evaluate antibacterial and anti-cancer properties of such nanostructured surface, gram negative bacteria E. coli, cancerous osteoblast like MG-63 cells and non-cancerous fibroblast NIH/3T3 were cultured on designed surfaces. Our results suggested that selenium nanoparticles improved antibacterial properties of titanium dioxide nanotubes and confirmed the anticancer activity towards MG-63 cells, with increasing surface density of nanoparticles. Further, the selenium decorated TiO2 nanotubes suggested deteriorating effect on the cell adhesion and viability of non-cancerous NIH/3T3 cells. Thus, we demonstrated that selenium nanoparticles decorated TiO2 nanotubes synthesized using sodium selenite and glutathione can be used to control bacterial infections and prevent the growth of cancerous cells. However, the higher surface density of nanoparticles adsorbed on the surface was found to be cytotoxic for non-cancerous NIH/3T3 cells and thus it might complicate the integration of biomaterial into the host tissue. Therefore, an optimal surface density of selenium nanoparticles must be found to effectively kill bacteria and cancer cells, while remaining favorable for normal cells.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- buňky NIH 3T3 MeSH
- Escherichia coli účinky léků MeSH
- infekce vyvolané Escherichia coli farmakoterapie MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie MeSH
- nanočástice * chemie ultrastruktura MeSH
- nanotrubičky * chemie ultrastruktura MeSH
- osteoblasty účinky léků MeSH
- protinádorové látky chemie farmakologie MeSH
- selen chemie farmakologie MeSH
- titan chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- protinádorové látky MeSH
- selen MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
Ti-6Al-4V-based nanotubes were prepared on a Ti-6Al-4V surface by anodic oxidation on 10 V, 20 V, and 30 V samples. The 10 V, 20 V, and 30 V samples and a control smooth Ti-6Al-4V sample were evaluated in terms of their chemical composition, diameter distribution, and cellular response. The surfaces of the 10 V, 20 V, and 30 V samples consisted of nanotubes of a relatively wide range of diameters that increased with the voltage. Saos-2 cells had a similar initial adhesion on all nanotube samples to the control Ti-6Al-4V sample, but it was lower than on glass. On day 3, the highest concentrations of both vinculin and talin measured by enzyme-linked immunosorbent assay and intensity of immunofluorescence staining were on 30 V nanotubes. On the other hand, the highest concentrations of ALP, type I collagen, and osteopontin were found on 10 V and 20 V samples. The final cellular densities on 10 V, 20 V, and 30 V samples were higher than on glass. Therefore, the controlled anodization of Ti-6Al-4V seems to be a useful tool for preparing nanostructured materials with desirable biological properties.
- Klíčová slova
- Saos-2 cells, cell adhesion, nanostructure, osteogenic differentiation, titanium nanotubes,
- MeSH
- aktiny metabolismus MeSH
- biologické markery metabolismus MeSH
- buněčná adheze účinky léků MeSH
- buněčná diferenciace účinky léků MeSH
- fluorescenční protilátková technika MeSH
- fotoelektronová spektroskopie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nanotrubičky chemie MeSH
- osteoblasty cytologie účinky léků MeSH
- osteogeneze účinky léků MeSH
- povrchové vlastnosti MeSH
- proliferace buněk účinky léků MeSH
- slitiny MeSH
- titan farmakologie MeSH
- velikost částic * MeSH
- viabilita buněk účinky léků MeSH
- vinkulin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- biologické markery MeSH
- slitiny MeSH
- titan MeSH
- titanium alloy (TiAl6V4) MeSH Prohlížeč
- vinkulin MeSH