Nejvíce citovaný článek - PubMed ID 19596809
The exon junction complex (EJC) is a key player in metazoan mRNA quality control and is placed upstream of the exon-exon junction after splicing. Its inner core is composed of Magoh, Y14, eIF4AIII and BTZ and the outer core of proteins involved in mRNA splicing (CWC22), export (Yra1), translation (PYM) and nonsense mediated decay (NMD, UPF1/2/3). Trypanosoma brucei encodes only two genes with introns, but all mRNAs are processed by trans-splicing. The presence of three core EJC proteins and a potential BTZ homologue (Rbp25) in trypanosomes has been suggested to adapt of the EJC function to mark trans-spliced mRNAs. We analysed trypanosome EJC components and noticed major differences between eIF4AIII and Magoh/Y14: (i) whilst eIF4AIII is essential, knocking out both Magoh and Y14 elicits only a mild growth phenotype (ii) eIF4AIII localization is mostly nucleolar, while Magoh and Y14 are nucleolar and nucleoplasmic but excluded from the cytoplasm (iii) eIF4AIII associates with nucleolar proteins and the splicing factor CWC22, but not with Y14 or Magoh, while Magoh and Y14 associate with each other, but not with eIF4AIII, CWC22 or nucleolar proteins. Our data argue against the presence of a functional EJC in trypanosomes, but indicate that eIF4AIII adopted non-EJC related, essential functions, while Magoh and Y14 became redundant. Trypanosomes also possess homologues to the NMD proteins UPF1 and UPF2. Depletion of UPF1 causes only a minor reduction in growth and phylogenetic analyses show several independent losses of UPF1 and UPF2, as well as complete loss of UPF3 in the Kinetoplastida group, indicating that UPF1-dependent NMD is not essential. Regardless, we demonstrate that UPF1 depletion restores the mRNA levels of a PTC reporter. Altogether, we show that the almost intron-less trypanosomes are in the process of losing the canonical EJC/NMD pathways: Y14 and Magoh have become redundant and the still-functional UPF1-dependent NMD pathway is not essential.
- MeSH
- eukaryotický iniciační faktor 4A metabolismus genetika MeSH
- exony genetika MeSH
- messenger RNA genetika metabolismus MeSH
- nonsense mediated mRNA decay * MeSH
- protozoální proteiny * metabolismus genetika MeSH
- RNA-helikasy * metabolismus genetika MeSH
- sestřih RNA MeSH
- Trypanosoma brucei brucei * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- eukaryotický iniciační faktor 4A MeSH
- messenger RNA MeSH
- protozoální proteiny * MeSH
- RNA-helikasy * MeSH
Nuclear export of mRNAs requires loading the mRNP to the transporter Mex67/Mtr2 in the nucleoplasm, controlled access to the pore by the basket-localised TREX-2 complex and mRNA release at the cytoplasmic site by the DEAD-box RNA helicase Dbp5. Asymmetric localisation of nucleoporins (NUPs) and transport components as well as the ATP dependency of Dbp5 ensure unidirectionality of transport. Trypanosomes possess homologues of the mRNA transporter Mex67/Mtr2, but not of TREX-2 or Dbp5. Instead, nuclear export is likely fuelled by the GTP/GDP gradient created by the Ran GTPase. However, it remains unclear, how directionality is achieved since the current model of the trypanosomatid pore is mostly symmetric. We have revisited the architecture of the trypanosome nuclear pore complex using a novel combination of expansion microscopy, proximity labelling and streptavidin imaging. We could confidently assign the NUP76 complex, a known Mex67 interaction platform, to the cytoplasmic site of the pore and the NUP64/NUP98/NUP75 complex to the nuclear site. Having defined markers for both sites of the pore, we set out to map all 75 trypanosome proteins with known nuclear pore localisation to a subregion of the pore using mass spectrometry data from proximity labelling. This approach defined several further proteins with a specific localisation to the nuclear site of the pore, including proteins with predicted structural homology to TREX-2 components. We mapped the components of the Ran-based mRNA export system to the nuclear site (RanBPL), the cytoplasmic site (RanGAP, RanBP1) or both (Ran, MEX67). Lastly, we demonstrate, by deploying an auxin degron system, that NUP76 holds an essential role in mRNA export consistent with a possible functional orthology to NUP82/88. Altogether, the combination of proximity labelling with expansion microscopy revealed an asymmetric architecture of the trypanosome nuclear pore supporting inherent roles for directed transport. Our approach delivered novel nuclear pore associated components inclusive positional information, which can now be interrogated for functional roles to explore trypanosome-specific adaptions of the nuclear basket, export control, and mRNP remodelling.
- MeSH
- aktivní transport - buněčné jádro MeSH
- buněčné jádro metabolismus MeSH
- jaderný pór * metabolismus ultrastruktura MeSH
- komplex proteinů jaderného póru metabolismus MeSH
- messenger RNA * metabolismus genetika MeSH
- nukleocytoplazmatické transportní proteiny metabolismus MeSH
- proteiny vázající RNA metabolismus MeSH
- protozoální proteiny metabolismus genetika MeSH
- ribonukleoproteiny MeSH
- transport RNA MeSH
- Trypanosoma brucei brucei * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- komplex proteinů jaderného póru MeSH
- messenger ribonucleoprotein MeSH Prohlížeč
- messenger RNA * MeSH
- nukleocytoplazmatické transportní proteiny MeSH
- proteiny vázající RNA MeSH
- protozoální proteiny MeSH
- ribonukleoproteiny MeSH
Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an 'all in one' solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.
- Klíčová slova
- BioID, Trypanosoma brucei, TurboID, cell biology, human, nuclear pore, phase separation, streptavidin imaging,
- MeSH
- biotinylace MeSH
- fluorescenční mikroskopie metody MeSH
- lidé MeSH
- protilátky metabolismus MeSH
- protozoální proteiny imunologie metabolismus MeSH
- rekombinantní fúzní proteiny metabolismus genetika imunologie MeSH
- streptavidin * chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protilátky MeSH
- protozoální proteiny MeSH
- rekombinantní fúzní proteiny MeSH
- streptavidin * MeSH
The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.
- Klíčová slova
- BioID, affinity capture, cryomilling, interactome, proteome,
- MeSH
- biotinylace MeSH
- jaderný pór MeSH
- proteiny * chemie MeSH
- proteomika * metody MeSH
- streptavidin chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny * MeSH
- streptavidin MeSH
Export of RNA from the nucleus is essential for all eukaryotic cells and has emerged as a major step in the control of gene expression. mRNA molecules are required to complete a complex series of processing events and pass a quality control system to protect the cytoplasm from the translation of aberrant proteins. Many of these events are highly conserved across eukaryotes, reflecting their ancient origin, but significant deviation from a canonical pathway as described from animals and fungi has emerged in the trypanosomatids. With significant implications for the mechanisms that control gene expression and hence differentiation, responses to altered environments and fitness as a parasite, these deviations may also reveal additional, previously unsuspected, mRNA export pathways.
- Klíčová slova
- eukaryogenesis, mRNA export, nuclear pore complex, polycistronic transcription, trans-splicing, trypanosomes,
- MeSH
- aktivní transport - buněčné jádro genetika MeSH
- buněčné jádro genetika metabolismus MeSH
- messenger RNA genetika MeSH
- RNA * genetika metabolismus MeSH
- Trypanosoma * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- messenger RNA MeSH
- RNA * MeSH
In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.
- Klíčová slova
- evolution, gene expression, mRNA export, proteomics, trypanosomes,
- MeSH
- aktivní transport - buněčné jádro MeSH
- proteomika * MeSH
- RNA MeSH
- sestřih RNA MeSH
- transport RNA MeSH
- Trypanosoma cruzi * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA MeSH
Kinetoplastids, including Trypanosoma brucei, control gene expression primarily at the posttranscriptional level. Nuclear mRNA export is an important, but understudied, step in this process. The general heterodimeric export factors, Mex67/Mtr2, function in the export of mRNAs and tRNAs in T. brucei, but RNA binding proteins (RBPs) that regulate export processes by controlling the dynamics of Mex67/Mtr2 ribonucleoprotein formation or transport have not been identified. Here, we report that DRBD18, an essential and abundant T. brucei RBP, associates with Mex67/Mtr2 in vivo, likely through its direct interaction with Mtr2. DRBD18 downregulation results in partial accumulation of poly(A)+ mRNA in the nucleus, but has no effect on the localization of intron-containing or mature tRNAs. Comprehensive analysis of transcriptomes from whole-cell and cytosol in DRBD18 knockdown parasites demonstrates that depletion of DRBD18 leads to impairment of nuclear export of a subset of mRNAs. CLIP experiments reveal the association of DRBD18 with several of these mRNAs. Moreover, DRBD18 knockdown leads to a partial accumulation of the Mex67/Mtr2 export receptors in the nucleus. Taken together, the current study supports a model in which DRBD18 regulates the selective nuclear export of mRNAs by promoting the mobilization of export competent mRNPs to the cytosol through the nuclear pore complex.
- Klíčová slova
- FISH, RNA binding protein, RNAseq, mRNA export, nucleoporin, trypanosome,
- MeSH
- aktivní transport - buněčné jádro MeSH
- genový knockdown metody MeSH
- membránové transportní proteiny metabolismus MeSH
- messenger RNA metabolismus MeSH
- nukleocytoplazmatické transportní proteiny metabolismus MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- regulace genové exprese MeSH
- RNA transferová metabolismus MeSH
- transkriptom MeSH
- transport RNA MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- membránové transportní proteiny MeSH
- messenger RNA MeSH
- nukleocytoplazmatické transportní proteiny MeSH
- proteiny vázající RNA MeSH
- protozoální proteiny MeSH
- RNA transferová MeSH
The nuclear pore complex (NPC) is responsible for transport between the cytoplasm and nucleoplasm and one of the more intricate structures of eukaryotic cells. Typically composed of over 300 polypeptides, the NPC shares evolutionary origins with endo-membrane and intraflagellar transport system complexes. The modern NPC was fully established by the time of the last eukaryotic common ancestor and, hence, prior to eukaryote diversification. Despite the complexity, the NPC structure is surprisingly flexible with considerable variation between lineages. Here, we review diversification of the NPC in major taxa in view of recent advances in genomic and structural characterisation of plant, protist and nucleomorph NPCs and discuss the implications for NPC evolution. Furthermore, we highlight these changes in the context of mRNA export and consider how this process may have influenced NPC diversity. We reveal the NPC as a platform for continual evolution and adaptation.
- Klíčová slova
- eukaryogenesis, evolutionary biology, nuclear pores, nuclear protein transport,
- MeSH
- biologická evoluce * MeSH
- biologický transport MeSH
- jaderný pór metabolismus MeSH
- membránové proteiny metabolismus MeSH
- messenger RNA metabolismus MeSH
- mitóza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- membránové proteiny MeSH
- messenger RNA MeSH