Nejvíce citovaný článek - PubMed ID 19682730
Intermediate filaments constitute the third component of the cellular skeleton. Unlike actin and microtubule cytoskeletons, the intermediate filaments are composed of a wide variety of structurally related proteins showing distinct expression patterns in tissues and cell types. Changes in the expression patterns of intermediate filaments are often associated with cancer progression; in particular with phenotypes leading to increased cellular migration and invasion. In this review we will describe the role of vimentin intermediate filaments in cancer cell migration, cell adhesion structures, and metastasis formation. The potential for targeting vimentin in cancer treatment and the development of drugs targeting vimentin will be reviewed.
- Klíčová slova
- EMT, amoeboid, cancer drugs, cancer treatment, cell adhesion, invasion, mechanotransduction, mesenchymal, vimentin,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Helicates and related metallofoldamers, synthesised by dynamic self-assembly, represent an area of chemical space inaccessible by traditional organic synthesis, and yet with potential for discovery of new classes of drug. Here we report that water-soluble, optically pure Fe(ii)- and even Zn(ii)-based triplex metallohelices are an excellent platform for post-assembly click reactions. By these means, the in vitro anticancer activity and most importantly the selectivity of a triplex metallohelix Fe(ii) system are dramatically improved. For one compound, a remarkable array of mechanistic and pharmacological behaviours is discovered: inhibition of Na+/K+ ATPase with potency comparable to the drug ouabain, antimetastatic properties (including inhibition of cell migration, re-adhesion and invasion), cancer stem cell targeting, and finally colonosphere inhibition competitive with the drug salinomycin.
- Publikační typ
- časopisecké články MeSH
Conventional chemotherapy is mostly effective in the treatment of rapidly-dividing differentiated tumor cells but has limited application toward eliminating cancer stem cell (CSC) population. The presence of a very small number of CSCs may contribute to the development of therapeutic resistance, metastases, and relapse. Thus, treatment failure by developing novel anticancer drugs capable of effective targeting of CSCs is at present a major challenge for research focused on chemotherapy of cancer. Here, we show that Os(II) complex 2 [Os(η6-pcym)(bphen)(dca)]PF6 (pcym = p-cymene, bphen = bathophenanthroline, and dca = dichloroacetate), is capable of efficient and selective killing CSCs in heterogeneous populations of human breast cancer cells MCF-7 and SKBR-3. Notably, its remarkable submicromolar potency to kill CSCs is considerably higher than that of its Ru analog, [Ru(η6-pcym)(bphen)(dca)]PF6 (complex 1) and salinomycin, one of the most selective CSC-targeting compounds hitherto identified. Furthermore, Os(II) complex 2 reduces the formation, size, and viability of three-dimensional mammospheres which more closely reflect the tumor microenvironment than cells in traditional two-dimensional cultures. The antiproliferation studies and propidium iodide staining using flow cytometry suggest that Os(II) complex 2 induces human breast cancer stem cell death predominantly by necroptosis, a programmed form of necrosis. The results of this study demonstrate the promise of Os(II) complex 2 in treating human breast tumors. They also represent the foundation for further preclinical and clinical studies and applications of Os(II) complex 2 to comply with the emergent need for human breast CSCs-specific chemotherapeutics capable to treat chemotherapy-resistant and relapsed human breast tumors.
- MeSH
- apoptóza účinky léků MeSH
- chloracetáty farmakologie MeSH
- cymeny farmakologie MeSH
- fenantroliny farmakologie MeSH
- komplexní sloučeniny farmakologie MeSH
- lidé MeSH
- lokální recidiva nádoru patologie MeSH
- nádorové buněčné linie MeSH
- nádorové kmenové buňky účinky léků metabolismus MeSH
- nádorové mikroprostředí účinky léků MeSH
- nádory prsu farmakoterapie patologie MeSH
- nekroptóza účinky léků MeSH
- nekróza metabolismus MeSH
- organoplatinové sloučeniny farmakologie MeSH
- osmium farmakologie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky farmakologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4-cymene MeSH Prohlížeč
- bathophenanthroline MeSH Prohlížeč
- chloracetáty MeSH
- cymeny MeSH
- diammine(dichloroacetato)platinum(II) MeSH Prohlížeč
- fenantroliny MeSH
- komplexní sloučeniny MeSH
- organoplatinové sloučeniny MeSH
- osmium MeSH
- protinádorové látky MeSH
The anti-diabetic biguanide metformin may exert health-promoting effects via metabolic regulation of the epigenome. Here we show that metformin promotes global DNA methylation in non-cancerous, cancer-prone and metastatic cancer cells by decreasing S-adenosylhomocysteine (SAH), a strong feedback inhibitor of S-adenosylmethionine (SAM)-dependent DNA methyltransferases, while promoting the accumulation of SAM, the universal methyl donor for cellular methylation. Using metformin and a mitochondria/complex I (mCI)-targeted analog of metformin (norMitoMet) in experimental pairs of wild-type and AMP-activated protein kinase (AMPK)-, serine hydroxymethyltransferase 2 (SHMT2)- and mCI-null cells, we provide evidence that metformin increases the SAM:SAH ratio-related methylation capacity by targeting the coupling between serine mitochondrial one-carbon flux and CI activity. By increasing the contribution of one-carbon units to the SAM from folate stores while decreasing SAH in response to AMPK-sensed energetic crisis, metformin can operate as a metabolo-epigenetic regulator capable of reprogramming one of the key conduits linking cellular metabolism to the DNA methylation machinery.
- MeSH
- genom lidský * MeSH
- hypoglykemika farmakologie MeSH
- lidé MeSH
- metformin farmakologie MeSH
- metylace DNA účinky léků MeSH
- mitochondrie účinky léků metabolismus patologie MeSH
- myši MeSH
- nádorové biomarkery MeSH
- nádorové buňky kultivované MeSH
- nádory prsu farmakoterapie enzymologie patologie MeSH
- nádory tračníku farmakoterapie enzymologie patologie MeSH
- následné studie MeSH
- proteinkinasy aktivované AMP metabolismus MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- respirační komplex I metabolismus MeSH
- S-adenosylhomocystein metabolismus MeSH
- S-adenosylmethionin metabolismus MeSH
- uhlík metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hypoglykemika MeSH
- metformin MeSH
- nádorové biomarkery MeSH
- proteinkinasy aktivované AMP MeSH
- respirační komplex I MeSH
- S-adenosylhomocystein MeSH
- S-adenosylmethionin MeSH
- uhlík MeSH
The concept of hierarchical organization of tumour cell population, with cancer stem cells positioned at the apex of the cell hierarchy, can explain at least some crucial aspects of biological and clinical behaviour of cancer, like its propensity to relapse as well as the development of therapeutic resistance. The underlying biological properties of cancer stem cells are crucially dependent on various signals, inhibition of which provides an attractive opportunity to attack pharmacologically cancer stem cells. Currently, a lot of such stemness-inhibitors undergo various phases of clinical testing. Interestingly, numerous old drugs that are in routine use in human and veterinary medicine for non-oncological indications appear to be able to specifically target cancer stem cells as well. As cancer stem cells, at least for most tumours, represent usually only a minor tumour cell fraction, it is quite probable that the main focus of the clinical use of the stemness inhibitors would consist in their rational combinations with traditional anticancer treatment modalities. A highly important goal for the future research is to identify reliable and clinically applicable predictive markers that would allow to apply these novel anticancer drugs on the individual basis within the context of personalized medicine.
- Klíčová slova
- Cancer stem cells, Cancer therapy, Combination therapy, Drug repurposing,
- MeSH
- individualizovaná medicína MeSH
- kombinovaná terapie MeSH
- lidé MeSH
- nádorové kmenové buňky účinky léků MeSH
- nádory farmakoterapie MeSH
- přehodnocení terapeutických indikací léčivého přípravku MeSH
- protinádorové látky terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- protinádorové látky MeSH
Cancer stem cells (CSCs) are highly resistant to conventional chemo- and radiotherapeutic regimes. Therefore, the multiple drug resistance (MDR) of cancer is most likely due to the resistance of CSCs. Such resistance can be attributed to some bypassing pathways including detoxification mechanisms of reactive oxygen and nitrogen species (RO/NS) formation or enhanced autophagy. Unlike in normal cells, where RO/NS concentration is maintained at certain threshold required for signal transduction or immune response mechanisms, CSCs may develop alternative pathways to diminish RO/NS levels leading to cancer survival. In this minireview, we will focus on elaborated mechanisms developed by CSCs to attenuate high RO/NS levels. Gaining a better insight into the mechanisms of stem cell resistance to chemo- or radiotherapy may lead to new therapeutic targets thus serving for better anticancer strategies.
- MeSH
- chemoradioterapie metody MeSH
- chemorezistence * MeSH
- lidé MeSH
- mitochondrie metabolismus patologie MeSH
- nádorové kmenové buňky metabolismus patologie MeSH
- nádory * metabolismus patologie terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH