Nejvíce citovaný článek - PubMed ID 21963952
Alterations in protein metabolism and amino acid concentrations in rats fed by a high-protein (casein-enriched) diet - effect of starvation
Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are increased in starvation and diabetes mellitus. However, the pathogenesis has not been explained. It has been shown that BCAA catabolism occurs mostly in muscles due to high activity of BCAA aminotransferase, which converts BCAA and α-ketoglutarate (α-KG) to branched-chain keto acids (BCKAs) and glutamate. The loss of α-KG from the citric cycle (cataplerosis) is attenuated by glutamate conversion to α-KG in alanine aminotransferase and aspartate aminotransferase reactions, in which glycolysis is the main source of amino group acceptors, pyruvate and oxaloacetate. Irreversible oxidation of BCKA by BCKA dehydrogenase is sensitive to BCKA supply, and ratios of NADH to NAD+ and acyl-CoA to CoA-SH. It is hypothesized that decreased glycolysis and increased fatty acid oxidation, characteristic features of starvation and diabetes, cause in muscles alterations resulting in increased BCAA levels. The main alterations include (i) impaired BCAA transamination due to decreased supply of amino groups acceptors (α-KG, pyruvate, and oxaloacetate) and (ii) inhibitory influence of NADH and acyl-CoAs produced in fatty acid oxidation on citric cycle and BCKA dehydrogenase. The studies supporting the hypothesis and pros and cons of elevated BCAA concentrations are discussed in the article.
- Klíčová slova
- alanine, glucose, insulin, insulin resistance, obesity, pyruvate,
- MeSH
- alanin metabolismus MeSH
- diabetes mellitus metabolismus MeSH
- glykolýza MeSH
- hladovění metabolismus MeSH
- inzulin metabolismus MeSH
- inzulinová rezistence MeSH
- kyseliny ketoglutarové metabolismus MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- obezita metabolismus MeSH
- oxidace-redukce MeSH
- pyruváty farmakokinetika MeSH
- svaly enzymologie metabolismus MeSH
- transaminasy metabolismus MeSH
- větvené aminokyseliny metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- alanin MeSH
- branched-chain-amino-acid transaminase MeSH Prohlížeč
- inzulin MeSH
- kyseliny ketoglutarové MeSH
- mastné kyseliny MeSH
- pyruváty MeSH
- transaminasy MeSH
- větvené aminokyseliny MeSH
A feared adverse effect of dyslipidaemia therapy by fibrates is myopathy. We examined the effect of fenofibrate (FF) on protein and amino acid metabolism. Rats received a low (50 mg/kg, LFFD) or high (300 mg/kg, HFFD) dose of FF or vehicle daily by oral gavage. Blood plasma, liver, and soleus and extensor digitorum longus muscles were analysed after 10 days. The FF-treated rats developed hepatomegaly associated with increased hepatic carnitine and ATP and AMP concentrations, decreased protein breakdown, and decreased concentrations of DNA and triglycerides. HFFD increased plasma ALT and AST activities. The weight and protein content of muscles in the HFFD group were lower compared with controls. In muscles of the LFFD group there were increased ATP and decreased AMP concentrations; in the HFFD group AMP was increased. In both FF-treated groups there were increased glycine, phenylalanine, and citrulline and decreased arginine and branched-chain keto acids (BCKA) in blood plasma. After HFFD there were decreased levels of branched-chain amino acids (BCAA; valine, leucine and isoleucine), methionine, and lysine and increased homocysteine. Decreased arginine and increased glycine concentrations were found in both muscles in FF-treated animals; in HFFD-treated animals lysine, methionine, and BCAA were decreased. We conclude that FF exerts protein-anabolic effects on the liver and catabolic effects on muscles. HFFD causes signs of hepatotoxicity, impairs energy and protein balance in muscles, and decreases BCAA, methionine, and lysine. It is suggested that increased glycine and decreased lysine and methionine levels are due to activated carnitine synthesis; decreased BCAA and BCKA levels are due to increased BCAA oxidation.
- Klíčová slova
- branched-chain amino acids, carnitine, fibrates, hepatomegaly, methionine,
- MeSH
- aminokyseliny účinky léků metabolismus MeSH
- energetický metabolismus účinky léků MeSH
- fenofibrát aplikace a dávkování MeSH
- glycin metabolismus MeSH
- hepatomegalie chemicky indukované metabolismus MeSH
- hypolipidemika aplikace a dávkování MeSH
- játra účinky léků metabolismus MeSH
- karnitin krev MeSH
- kosterní svaly účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- leucin metabolismus MeSH
- lidé MeSH
- lysin metabolismus MeSH
- methionin metabolismus MeSH
- oxidace-redukce MeSH
- potkani Wistar MeSH
- proteiny účinky léků metabolismus MeSH
- větvené aminokyseliny krev MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- fenofibrát MeSH
- glycin MeSH
- hypolipidemika MeSH
- karnitin MeSH
- leucin MeSH
- lysin MeSH
- methionin MeSH
- proteiny MeSH
- větvené aminokyseliny MeSH
Histidine (HIS) is investigated for therapy of various disorders and as a nutritional supplement to enhance muscle performance. We examined effects of HIS on amino acid and protein metabolism. Rats consumed HIS in a drinking water at a dose of 0.5 g/l (low HIS), 2 g/l (high HIS) or 0 g/l (control) for 4 weeks. At the end of the study, the animals were euthanized and blood plasma, liver, soleus (SOL), tibialis (TIB), and extensor digitorum longus (EDL) muscles analysed. HIS supplementation increased food intake, body weight and weights and protein contents of the liver and kidneys, but not muscles. In blood plasma there were increases in glucose, urea, and several amino acids, particularly alanine, proline, aspartate, and glutamate and in high HIS group, ammonia was increased. The main findings in the liver were decreased concentrations of methionine, aspartate, and glycine and increased alanine. In muscles of HIS-consuming animals increased alanine and glutamine. In high HIS group (in SOL and TIB) increased chymotrypsin-like activity of proteasome (indicates increased proteolysis); in SOL decreased anserine (beta-alanyl-N1-methylhistidine). We conclude that HIS supplementation increases ammonia production, alanine and glutamine synthesis in muscles, affects turnover of proteins and HIS-containing peptides, and increases requirements for glycine and methionine.
- MeSH
- aminokyseliny metabolismus MeSH
- histidin aplikace a dávkování MeSH
- játra metabolismus MeSH
- náhodné rozdělení MeSH
- potkani Wistar MeSH
- potravní doplňky MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- svaly metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- histidin MeSH
- proteasomový endopeptidasový komplex MeSH
Beta-hydroxy-beta-methylbutyrate (HMB) is a leucine metabolite with protein anabolic effects. We examined the effects of an HMB-enriched diet in healthy rats and rats with liver cirrhosis induced by multiple doses of carbon tetrachloride (CCl4). HMB increased branched-chain amino acids (BCAAs; valine, leucine and isoleucine) in blood and BCAA and ATP in muscles of healthy animals. The effect on muscle mass and protein content was insignificant. In CCl4-treated animals alterations characteristic of liver cirrhosis were found with decreased ratio of the BCAA to aromatic amino acids in blood and lower muscle mass and ATP content when compared with controls. In CCl4-treated animals consuming HMB, we observed higher mortality, lower body weight, higher BCAA levels in blood plasma, higher ATP content in muscles, and lower ATP content and higher cathepsin B and L activities in the liver when compared with CCl4-treated animals without HMB. We conclude that (1) HMB supplementation has a positive effect on muscle mitochondrial function and enhances BCAA concentrations in healthy animals and (2) the effects of HMB on the course of liver cirrhosis in CCl4-treated rats are detrimental. Further studies examining the effects of HMB in other models of hepatic injury are needed to determine pros and cons of HMB in the treatment of subjects with liver cirrhosis.
- Klíčová slova
- branched-chain amino acids, hepatic cachexia, insulin resistance, leucine, liver cirrhosis,
- MeSH
- chlorid uhličitý metabolismus MeSH
- jaterní cirhóza metabolismus MeSH
- játra účinky léků metabolismus MeSH
- kosterní svaly účinky léků metabolismus MeSH
- leucin metabolismus MeSH
- potkani Wistar MeSH
- potravní doplňky MeSH
- valeráty farmakologie MeSH
- větvené aminokyseliny metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-hydroxyisovaleric acid MeSH Prohlížeč
- chlorid uhličitý MeSH
- leucin MeSH
- valeráty MeSH
- větvené aminokyseliny MeSH
Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids with protein anabolic properties, which have been studied in a number of muscle wasting disorders for more than 50 years. However, until today, there is no consensus regarding their therapeutic effectiveness. In the article is demonstrated that the crucial roles in BCAA metabolism play: (i) skeletal muscle as the initial site of BCAA catabolism accompanied with the release of alanine and glutamine to the blood; (ii) activity of branched-chain keto acid dehydrogenase (BCKD); and (iii) amination of branched-chain keto acids (BCKAs) to BCAAs. Enhanced consumption of BCAA for ammonia detoxification to glutamine in muscles is the cause of decreased BCAA levels in liver cirrhosis and urea cycle disorders. Increased BCKD activity is responsible for enhanced oxidation of BCAA in chronic renal failure, trauma, burn, sepsis, cancer, phenylbutyrate-treated subjects, and during exercise. Decreased BCKD activity is the main cause of increased BCAA levels and BCKAs in maple syrup urine disease, and plays a role in increased BCAA levels in diabetes type 2 and obesity. Increased BCAA concentrations during brief starvation and type 1 diabetes are explained by amination of BCKAs in visceral tissues and decreased uptake of BCAA by muscles. The studies indicate beneficial effects of BCAAs and BCKAs in therapy of chronic renal failure. New therapeutic strategies should be developed to enhance effectiveness and avoid adverse effects of BCAA on ammonia production in subjects with liver cirrhosis and urea cycle disorders. Further studies are needed to elucidate the effects of BCAA supplementation in burn, trauma, sepsis, cancer and exercise. Whether increased BCAA levels only markers are or also contribute to insulin resistance should be known before the decision is taken regarding their suitability in obese subjects and patients with type 2 diabetes. It is concluded that alterations in BCAA metabolism have been found common in a number of disease states and careful studies are needed to elucidate their therapeutic effectiveness in most indications.
Phenylbutyrate is recommended in urea cycle disorders and liver injury to enhance nitrogen disposal by the urine. However, hypothetically there may be adverse responses to the use of phenylbutyrate in the treatment of liver disease because of its role as a histone deacetylase inhibitor and its stimulatory effect on branched-chain alpha-keto acid dehydrogenase, the rate-limiting enzyme in the catabolism of branched-chain amino acids (BCAA; valine, leucine and isoleucine). We report the effects of phenylbutyrate on liver regeneration and amino acid levels in plasma of partially hepatectomized (PH) rats. Phenylbutyrate or saline was administered at 12-h intervals to PH or laparotomized rats. Phenylbutyrate delayed the onset of liver regeneration compared to the saline-treated controls, as indicated by lower hepatic DNA specific activities 18 and 24( ) h post-PH, decreased hepatic fractional protein synthesis rates 24 h post-PH and lowered the increases in liver weights and hepatic protein and DNA contents 48 h after PH. Hepatic DNA fragmentation (a hallmark of apoptosis) was higher in the phenylbutyrate-treated animals than in controls. Phenylbutyrate decreased the glutamine and BCAA concentrations and the ratio of the BCAA to aromatic amino acids (phenylalanine and tyrosine) in the blood plasma in both hepatectomized and laparotomized animals. In conclusion, the delayed onset of liver regeneration and the decrease in BCAA/AAA ratio in blood suggest that phenylbutyrate administration may be disastrous in subjects with acute hepatic injury and BCAA supplementation is needed when phenylbutyrate is used therapeutically.
- Klíčová slova
- ammonia, branched-chain amino acids, encephalopathy, glutamine, hepatic injury,
- MeSH
- aminokyseliny metabolismus MeSH
- amoniak metabolismus MeSH
- fenylbutyráty škodlivé účinky MeSH
- glutamin metabolismus MeSH
- hepatektomie metody MeSH
- játra účinky léků metabolismus MeSH
- potkani Wistar MeSH
- regenerace jater účinky léků MeSH
- větvené aminokyseliny účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- amoniak MeSH
- fenylbutyráty MeSH
- glutamin MeSH
- větvené aminokyseliny MeSH
Chronic arginine intake is believed to have favorable effects on the body. However, it might be hypothesized that excessive consumption of an individual amino acid exerts adverse effects on distribution and metabolism of other amino acids. We evaluated the effect of chronic intake of arginine on amino acid concentrations in blood plasma, liver, kidneys, and soleus and extensor digitorum longus muscles. Rats were fed a standard diet or a high-arginine diet (HAD) for two months. Half of the animals in each group were sacrificed in the fed state, and the other half after fasting overnight. HAD increased blood plasma concentrations of urea, creatinine, arginine, and ornithine and decreased most other amino acids. Arginine and ornithine also increased in muscles and kidneys; an increase of lysine was observed in both muscle types. Methionine, phenylalanine, threonine, asparagine, glycine, serine, and taurine decreased in most tissues of HAD fed animals. Most of the effects of HAD disappeared after overnight fasting. It is concluded that (i) enhanced dietary arginine intake alters distribution of almost all amino acids; and (ii) to attain a better assessment of the effects of various nutritional interventions, an appropriate number of biochemical measurements must be performed in both postprandial and postabsorptive states.
- Klíčová slova
- amino acids, arginine, nutrition, nutritional supplements, starvation,
- MeSH
- aminokyseliny krev MeSH
- arginin aplikace a dávkování farmakologie MeSH
- krysa rodu Rattus MeSH
- potkani Wistar MeSH
- potravinová deprivace fyziologie MeSH
- potravní doplňky * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- arginin MeSH