Nejvíce citovaný článek - PubMed ID 22679096
Background/Objectives: The increasing pressure from pathogens and parasites on Apis mellifera populations is resulting in significant colony losses. It is desirable to identify resistance-associated single-nucleotide polymorphisms (SNPs) and their variability for the purpose of breeding resilient honeybee lines. This study examined the genetic diversity of 13 SNPs previously studied for associations with various resistance-providing traits, including six linked to Varroa-specific hygiene, five linked to suppressed mite reproduction, one linked to immune response, and one linked to chalkbrood resistance. Methods: Genotyping was performed using a novel SNaPshot genotyping panel designed for this study. The sample pool consisted of 308 honeybee samples in total, covering all 77 administrative districts of the Czech Republic. Results: All examined loci were polymorphic. The frequency of positive alleles in our population is medium to low, depending on the specific SNP. An analysis of genotype frequencies revealed that most loci exhibited the Hardy-Weinberg equilibrium. A comparison of the allele and genotype frequencies of the same locus between samples from hives and samples from flowers revealed no significant differences. The genetic diversity, as indicated by the heterozygosity values, ranged from 0.05 to 0.50. The fixation index (F) was, on average, close to zero, indicating minimal influence of inbreeding or non-random mating on the genetic structure of the analyzed samples. Conclusions: The obtained results provide further insights into the genetic variation of SNPs associated with the immune response and resistance to pathogens in honeybee populations in the Czech Republic. This research provides a valuable foundation for future studies of honeybee diversity and breeding.
- Klíčová slova
- Apis mellifera, SMR, SNP, VSH, Varroa resistance, genetic diversity, hygienic behavior, immune response,
- MeSH
- frekvence genu MeSH
- genetická variace MeSH
- genotyp MeSH
- genotypizační techniky metody MeSH
- jednonukleotidový polymorfismus * MeSH
- odolnost vůči nemocem * genetika MeSH
- včely genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The Western honey bee (Apis mellifera) is a vital agricultural pollinator whose populations are threatened by the parasitic mite Varroa destructor and associated pathogens. While the impact of Paenibacillus species on honey bees, particularly Paenibacillus larvae causing American foulbrood, is documented, their effect on the microbiota of Varroa mites remains unclear. This study aimed to investigate the influence of Paenibacillus sp. on the bacterial communities of Varroa mites and adult honey bees. We hypothesized that Paenibacillus sp. would significantly alter the microbiota of Varroa mites but have minimal effect on that of adult honey bees. Utilizing 16S rRNA sequencing data from a previous study, we reanalyzed samples categorized into four groups based on Paenibacillus sp. infection load: highly infected and lowly infected honey bees (A. mellifera) and mites (V. destructor). Infection status was determined by Paenibacillus sp. read counts, with more than three reads indicating high infection. Microbial diversity was assessed using alpha and beta diversity metrics. Co-occurrence networks were constructed to visualize bacterial community assemblies, and network robustness was evaluated through node addition and removal tests. Keystone taxa were identified based on eigenvector centrality and relative abundance. Highly infected Varroa mites exhibited a significant reduction in alpha diversity and a markedly different bacterial community composition compared to lowly infected mites (p < 0.05). Their bacterial co-occurrence networks showed decreased connectivity and robustness, indicating a disruptive effect of Paenibacillus sp. In contrast, adult honey bees displayed no significant differences in alpha diversity or network structure between highly and lowly infected groups (p > 0.05), suggesting a resilient microbiota. Keystone taxa analysis revealed fewer central species in highly infected Varroa mites, potentially impacting network stability. High Paenibacillus sp. infection is associated with significant alterations in the microbiota of Varroa mites, disrupting bacterial communities and potentially affecting mite physiology. The microbiota of adult honey bees appears more robust against Paenibacillus sp. influence. These findings enhance our understanding of the complex interactions within the "honey bee-mite-microorganism" system and may inform future strategies for managing Varroa mite infestations and associated pathogens.
- Klíčová slova
- Apis mellifera, Microbial networks, Microbiota analysis, Paenibacillus sp., Varroa destructor,
- Publikační typ
- časopisecké články MeSH
To date, many viruses have been discovered to infect honey bees. In this study, we used high-throughput sequencing to expand the known virome of the honey bee, Apis mellifera, by identifying several novel DNA viruses. While the majority of previously identified bee viruses are RNA, our study reveals nine new genomes from the Parvoviridae family, tentatively named Bee densoviruses 1 to 9. In addition, we characterized a large DNA virus, Apis mellifera filamentous-like virus (AmFLV), which shares limited protein identities with the known Apis mellifera filamentous virus. The complete sequence of AmFLV, obtained by a combination of laboratory techniques and bioinformatics, spans 152,678 bp. Linear dsDNA genome encodes for 112 proteins, of which 49 are annotated. Another large virus we discovered is Apis mellifera nudivirus, which belongs to a group of Alphanudivirus. The virus has a length of 129,467 bp and a circular dsDNA genome, and has 106 protein encoding genes. The virus contains most of the core genes of the family Nudiviridae. This research demonstrates the effectiveness of viral binning in identifying viruses in honey bee virology, showcasing its initial application in this field.IMPORTANCEHoney bees contribute significantly to food security by providing pollination services. Understanding the virome of honey bees is crucial for the health and conservation of bee populations and also for the stability of the ecosystems and economies for which they are indispensable. This study unveils previously unknown DNA viruses in the honey bee virome, expanding our knowledge of potential threats to bee health. The use of the viral binning approach we employed in this study offers a promising method to uncovering and understanding the vast viral diversity in these essential pollinators.
Honey bees are globally important pollinators threatened by many different pathogens, including viruses. We investigated the virome of honey bees collected at the end of the beekeeping season (August/September) in Czechia, a Central European country. Samples were examined in biological replicates to assess the homogeneity, stability, and composition of the virome inside a single hive. By choice of healthy workers from colonies, where Varroa destructor was under control, we could identify ubiquitous bee viruses. Deformed wing virus (DWV) was highly prevalent, even though the bees were healthy, without any noticeable disease signs. The overall virome composition (consisting of honey bee-, plant-, and bacterium-infecting viruses) was driven primarily by the hive and its location. However, honey bee-specific viruses showed an uneven distribution within the same hive. In addition, our results point to an unusual cooccurrence between two rhabdoviruses and reveal the presence of five distinct lineages of Lake Sinai viruses (LSVs) clustering with other LSV strains described globally. Comparison of our results with the virome of Australian honey bees, the last truly Varroa- and DWV-free population, showed a strong difference with respect to DWV and a set of diverse members of the Picornavirales, of which the latter were absent in our samples. We hypothesize that the occurrence of DWV introduced by Varroa strongly affects the virome structure despite the mite being under control. IMPORTANCE The Western honey bee, Apis mellifera, is a vital part of our ecosystem as well as cultural heritage. Annual colony losses endanger beekeeping. In this study, we examined healthy bees from the heart of Central Europe, where honey bee colonies have been commonly affected by varroosis over 5 decades. Our virome analysis showed the presence of ubiquitous viruses in colonies where the mite Varroa destructor was under control and no honey bee disease signs were observed. Compared to previous studies, an important part of our study was the analysis of multiple replicates from individual hives. Our overall results indicate that the virome structure (including bee-infecting viruses, plant-infecting viruses, and bacteriophages) is stable within hives; however, the bee-infecting viruses varied largely within interhive replicates, suggesting variation of honey bee viruses within individual bees. Of interest was the striking difference between the viromes of our 39 pools and 9 pools of honey bee viromes previously analyzed in Australia. It could be suggested that Varroa not only affects DWV spread in bee colonies but also affects diverse members of the Picornavirales, which were strongly decreased in Czech bees compared to the Varroa- and DWV-naive Australian bees.
- Klíčová slova
- Apis mellifera, Lake Sinai virus, Picornavirales, metagenomics, rhabdovirus, viruses,
- MeSH
- bakteriofágy * MeSH
- ekosystém MeSH
- RNA-viry * MeSH
- Varroidae * MeSH
- včely MeSH
- virom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
Western honey bee (Apis mellifera) is one of the most important pollinators in the world. Thus, a recent honey bee health decline and frequent honey bee mass losses have drawn attention and concern. Honey bee fitness is primarily reduced by pathogens, parasites, and viral load, exposure to pesticides and their residues, and inadequate nutrition from both the quality and amount of food resources. This study evaluated the prevalence of the most common honey bee pathogens and viruses in different habitats across the Czech Republic. The agroecosystems, urban ecosystems, and national park were chosen for sampling from 250 colonies in 50 apiaries. Surprisingly, the most prevalent honey bee pathogens belong to the family Trypanosomatidae including Lotmaria passim and Crithidia mellificae. As expected, the most prevalent viruses were DWV, followed by ABPV. Additionally, the occurrence of DWV-B and DWV-C were correlated with honey bee colony mortality. From the habitat point of view, most pathogens occurred in the town habitat, less in the agroecosystem and least in the national park. The opposite trend was observed in the occurrence of viruses. However, the prevalence of viruses was not affected by habitat.
- Klíčová slova
- Apis mellifera, deformed wing virus, screening, trypanosomatids,
- Publikační typ
- časopisecké články MeSH
Essential oils and their components are generally known for their acaricidal effects and are used as an alternative to control the population of the Varroa destructor instead of synthetic acaricides. However, for many essential oils, the exact acaricidal effect against Varroa mites, as well as the effect against honey bees, is not known. In this study, 30 different essential oils were screened by using a glass-vial residual bioassay. Essential oils showing varroacidal efficacy > 70% were tested by the complete exposure assay. A total of five bees and five mites were placed in the Petri dishes in five replications for each concentration of essential oil. Mite and bee mortality rates were assessed after 4, 24, 48, and 72 h. The LC50 values and selectivity ratio (SR) were calculated. For essential oils with the best selectivity ratio, their main components were detected and quantified by GC-MS/MS. The results suggest that the most suitable oils are peppermint and manuka (SR > 9), followed by oregano, litsea (SR > 5), carrot, and cinnamon (SR > 4). Additionally, these oils showed a trend of the increased value of selective ratio over time. All these oils seem to be better than thymol (SR < 3.2), which is commonly used in beekeeping practice. However, the possible use of these essential oils has yet to be verified in beekeeping practice.
- Klíčová slova
- Varroa mite, acaricidal effect, complete exposure bioassay, honey bee, screening,
- Publikační typ
- časopisecké články MeSH
Honeybee workers undergo metamorphosis in capped cells for approximately 13 days before adult emergence. During the same period, Varroa mites prick the defenseless host many times. We sought to identify proteome differences between emerging Varroa-parasitized and parasite-free honeybees showing the presence or absence of clinical signs of deformed wing virus (DWV) in the capped cells. A label-free proteomic analysis utilizing nanoLC coupled with an Orbitrap Fusion Tribrid mass spectrometer provided a quantitative comparison of 2316 protein hits. Redundancy analysis (RDA) showed that the combination of Varroa parasitism and DWV clinical signs caused proteome changes that occurred in the same direction as those of Varroa alone and were approximately two-fold higher. Furthermore, proteome changes associated with DWV signs alone were positioned above Varroa in the RDA. Multiple markers indicate that Varroa activates TGF-β-induced pathways to suppress wound healing and the immune response and that the collective action of stressors intensifies these effects. Furthermore, we indicate JAK/STAT hyperactivation, p53-BCL-6 feedback loop disruption, Wnt pathway activation, Wnt/Hippo crosstalk disruption, and NF-κB and JAK/STAT signaling conflict in the Varroa-honeybee-DWV interaction. These results illustrate the higher effect of Varroa than of DWV at the time of emergence. Markers for future research are provided.
- MeSH
- biologické markery MeSH
- biologické modely MeSH
- histony metabolismus MeSH
- Janus kinasy metabolismus MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteiny Wnt metabolismus MeSH
- proteom * MeSH
- proteomika * MeSH
- reaktivní formy kyslíku metabolismus MeSH
- RNA-viry * MeSH
- signální transdukce MeSH
- symbióza * MeSH
- transformující růstový faktor beta * MeSH
- transkripční faktory STAT metabolismus MeSH
- Varroidae * MeSH
- včely metabolismus parazitologie virologie MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- histony MeSH
- Janus kinasy MeSH
- protein-serin-threoninkinasy MeSH
- proteiny Wnt MeSH
- proteom * MeSH
- reaktivní formy kyslíku MeSH
- transformující růstový faktor beta * MeSH
- transkripční faktory STAT MeSH
We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed.
- MeSH
- chromatografie kapalinová MeSH
- databáze genetické MeSH
- interakce hostitele a patogenu * MeSH
- proteom * MeSH
- proteomika * metody MeSH
- tandemová hmotnostní spektrometrie MeSH
- Varroidae virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom * MeSH