Nejvíce citovaný článek - PubMed ID 23956395
Effects of inoculum additions in the presence of a preestablished arbuscular mycorrhizal fungal community
The relationship between mycorrhiza functioning and composition of arbuscular mycorrhizal (AM) fungal communities is an important but experimentally still rather little explored topic. The main aim of this study was thus to link magnitude of plant benefits from AM symbiosis in different abiotic contexts with quantitative changes in AM fungal community composition. A synthetic AM fungal community inoculated to the model host plant Medicago truncatula was exposed to four different abiotic contexts, namely drought, elevated phosphorus availability, and shading, as compared to standard cultivation conditions, for two cultivation cycles. Growth and phosphorus uptake of the host plants was evaluated along with the quantitative composition of the synthetic AM fungal community. Abiotic context consistently influenced mycorrhiza functioning in terms of plant benefits, and the effects were clearly linked to the P requirement of non-inoculated control plants. In contrast, the abiotic context only had a small and transient effect on the quantitative AM fungal community composition. Our findings suggest no relationship between the degree of mutualism in AM symbiosis and the relative abundances of AM fungal species in communities in our simplified model system. The observed progressive dominance of one AM fungal species indicates an important role of different growth rates of AM fungal species for the establishment of AM fungal communities in simplified systems such as agroecosystems.
- Klíčová slova
- Community, Medicago truncatula, Mycorrhizal functioning, Phosphorus, Pre-conditioning, qPCR,
- MeSH
- fosfor analýza MeSH
- Medicago truncatula mikrobiologie MeSH
- mykobiom * MeSH
- mykorhiza fyziologie MeSH
- období sucha MeSH
- sluneční záření MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfor MeSH
Root colonization by arbuscular mycorrhizal fungi (AMF) can be quantified by different approaches. We compared two approaches that enable discrimination of specific AMF taxa and are therefore emerging as alternative to most commonly performed microscopic quantification of AMF in roots: quantitative real-time PCR (qPCR) using markers in nuclear ribosomal DNA (nrDNA) and mitochondrial ribosomal DNA (mtDNA). In a greenhouse experiment, Medicago truncatula was inoculated with four isolates belonging to different AMF species (Rhizophagus irregularis, Claroideoglomus claroideum, Gigaspora margarita and Funneliformis mosseae). The AMF were quantified in the root samples by qPCR targeted to both markers, microscopy and contents of AMF-specific phospholipid fatty acids (PLFA). Copy numbers of nrDNA and mtDNA were closely related within all isolates; however, the slopes and intercepts of the linear relationships significantly differed among the isolates. Across all isolates, a large proportion of variance in nrDNA copy numbers was explained by root colonization intensity or contents of AMF-specific PLFA, while variance in mtDNA copy numbers was mainly explained by differences among AMF isolates. We propose that the encountered inter-isolate differences in the ratios of mtDNA and nrDNA copy numbers reflect different physiological states of the isolates. Our results suggest that nrDNA is a more suitable marker region than mtDNA for the quantification of multiple AMF taxa as its copy numbers are better related to fungal biomass across taxa than are copy numbers of mtDNA.
- Klíčová slova
- Arbuscular mycorrhizal fungi, Isolate discrimination, Microsymbiont screening, Mitochondrial DNA, Molecular genetic quantification, Nuclear ribosomal DNA, PLFA, Real-time PCR,
- MeSH
- buněčné jádro genetika MeSH
- DNA fungální genetika MeSH
- Glomeromycota genetika MeSH
- kořeny rostlin mikrobiologie MeSH
- kvantitativní polymerázová řetězová reakce * MeSH
- Medicago truncatula mikrobiologie MeSH
- mitochondriální DNA genetika MeSH
- mykorhiza genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA fungální MeSH
- mitochondriální DNA MeSH
Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.
- MeSH
- genotyp MeSH
- kořeny rostlin mikrobiologie MeSH
- mycelium růst a vývoj MeSH
- mykorhiza růst a vývoj MeSH
- půda MeSH
- rostliny mikrobiologie MeSH
- semenáček mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda MeSH
Considered to play an important role in plant mineral nutrition, arbuscular mycorrhizal (AM) symbiosis is a common relationship between the roots of a great majority of plant species and glomeromycotan fungi. Its effects on the plant host are highly context dependent, with the greatest benefits often observed in phosphorus (P)-limited environments. Mycorrhizal contribution to plant nitrogen (N) nutrition is probably less important under most conditions. Moreover, inasmuch as both plant and fungi require substantial quantities of N for their growth, competition for N could potentially reduce net mycorrhizal benefits to the plant under conditions of limited N supply. Further compounded by increased belowground carbon (C) drain, the mycorrhizal costs could outweigh the benefits under severe N limitation. Using a field AM fungal community or a laboratory culture of Rhizophagus irregularis as mycorrhizal inoculants, we tested the contribution of mycorrhizal symbiosis to the growth, C allocation, and mineral nutrition of Andropogon gerardii growing in a nutrient-poor substrate under variable N and P supplies. The plants unambiguously competed with the fungi for N when its supply was low, resulting in no or negative mycorrhizal growth and N-uptake responses under such conditions. The field AM fungal communities manifested their potential to improve plant P nutrition only upon N fertilization, whereas the R. irregularis slightly yet significantly increased P uptake of its plant host (but not the host's growth) even without N supply. Coincident with increasing levels of root colonization by the AM fungal structures, both inoculants invariably increased nutritional and growth benefits to the host with increasing N supply. This, in turn, resulted in relieving plant P deficiency, which was persistent in non-mycorrhizal plants across the entire range of nutrient supplies.
Research on the role of arbuscular mycorrhizal fungi (AMF) in the synthesis of essential oils (EOs) by aromatic plants has seldom been conducted in field-relevant conditions, and then, only limited spectra of EO constituents have been analyzed. The effect was investigated of inoculation with AMF on the synthesis of a wide range of EO in two aromatic species, coriander (Coriandrum sativum) and dill (Anethum graveolens), in a garden experiment under outdoor conditions. Plants were grown in 4-l pots filled with soil, which was either γ-irradiated (eliminating native AMF) or left non-sterile (containing native AMF), and inoculated or not with an isolate of Rhizophagus irregularis. AMF inoculation significantly stimulated EO synthesis in both plant species. EO synthesis (total EO and several individual constituents) was increased in dill in all mycorrhizal treatments (containing native and/or inoculated AMF) compared to non-mycorrhizal plants. In contrast, EO concentrations in coriander (total EO and most constituents) were increased only in the treatment combining both inoculated and native AMF. A clear positive effect of AMF on EO synthesis was found for both aromatic plants, which was, however, specific for each plant species and modified by the pool of AMF present in the soil.
- Klíčová slova
- Arbuscular mycorrhiza, Aromatic plants, Coriander, Dill, Essential oils, Growth responses,
- MeSH
- kopr vonný metabolismus mikrobiologie MeSH
- koriandr metabolismus mikrobiologie MeSH
- mykorhiza růst a vývoj MeSH
- oleje prchavé metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oleje prchavé MeSH
Monitoring populations of arbuscular mycorrhizal fungi (AMF) in roots is a pre-requisite for improving our understanding of AMF ecology and functioning of the symbiosis in natural conditions. Among other approaches, quantification of fungal DNA in plant tissues by quantitative real-time PCR is one of the advanced techniques with a great potential to process large numbers of samples and to deliver truly quantitative information. Its application potential would greatly increase if the samples could be preserved by drying, but little is currently known about the feasibility and reliability of fungal DNA quantification from dry plant material. We addressed this question by comparing quantification results based on dry root material to those obtained from deep-frozen roots of Medicago truncatula colonized with Rhizophagus sp. The fungal DNA was well conserved in the dry root samples with overall fungal DNA levels in the extracts comparable with those determined in extracts of frozen roots. There was, however, no correlation between the quantitative data sets obtained from the two types of material, and data from dry roots were more variable. Based on these results, we recommend dry material for qualitative screenings but advocate using frozen root materials if precise quantification of fungal DNA is required.
- MeSH
- DNA fungální genetika izolace a purifikace MeSH
- kořeny rostlin chemie růst a vývoj mikrobiologie MeSH
- Medicago truncatula chemie růst a vývoj mikrobiologie MeSH
- mykorhiza chemie genetika MeSH
- ochrana biologická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH