Most cited article - PubMed ID 23982311
Two different lineages of bedbug (Cimex lectularius) reflected in host specificity
BACKGROUND: The common bedbug Cimex lectularius is a widespread ectoparasite on humans and bats. Two genetically isolated lineages, parasitizing either human (HL) or bat (BL) hosts, have been suggested to differentiate because of their distinct ecology. The distribution range of BL is within that of HL and bedbugs live mostly on synanthropic bat hosts. This sympatric co-occurrence predicts strong reproductive isolation at the post-copulatory level. RESULTS: We tested the post-copulatory barrier in three BL and three HL populations in reciprocal crosses, using a common-garden blood diet that was novel to both lineages. We excluded pre-copulation isolation mechanisms and studied egg-laying rates after a single mating until the depletion of sperm, and the fitness of the resulting offspring. We found a higher sperm storage capability in BL, likely reflecting the different seasonal availability of HL and BL hosts. We also observed a notable variation in sperm function at the population level within lineages and significant differences in fecundity and offspring fitness between lineages. However, no difference in egg numbers or offspring fitness was observed between within- and between-lineage crosses. CONCLUSIONS: Differences in sperm storage or egg-laying rates between HL and BL that we found did not affect reproductive isolation. Neither did the population-specific variation in sperm function. Overall, our results show no post-copulatory reproductive isolation between the lineages. How genetic differentiation in sympatry is maintained in the absence of a post-copulatory barrier between BL and HL remains to be investigated.
- Keywords
- Ecological speciation, Host adaptation, Host fidelity, Sperm storage,
- Publication type
- Journal Article MeSH
Sperm performance can vary in ecologically divergent populations, but it is often not clear whether the environment per se or genomic differences arising from divergent selection cause the difference. One powerful and easily manipulated environmental effect is diet. Populations of bedbugs (Cimex lectularius) naturally feed either on bat or human blood. These are diverging genetically into a bat-associated and a human-associated lineage. To measure how male diet affects sperm performance, we kept males of two HL and BL populations each on either their own or the foreign diet. Then we investigated male reproductive success in a single mating and sperm competition context. We found that male diet affected female fecundity and changed the outcome of sperm competition, at least in the human lineage. However, this influence of diet on sperm performance was moulded by an interaction. Bat blood generally had a beneficial effect on sperm competitiveness and seemed to be a better food source in both lineages. Few studies have examined the effects of male diet on sperm performance generally, and sperm competition specifically. Our results reinforce the importance to consider the environment in which sperm are produced. In the absence of gene flow, such differences may increase reproductive isolation. In the presence of gene flow, however, the generally better sperm performance after consuming bat blood suggests that the diet is likely to homogenise rather than isolate populations.
- MeSH
- Ecology MeSH
- Entomology MeSH
- Humans MeSH
- Spermatozoa physiology MeSH
- Bedbugs physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
As populations differentiate across geographic or host-association barriers, interpopulation fertility is often a measure of the extent of incipient speciation. The bed bug, Cimex lectularius L., was recently found to form two host-associated lineages within Europe: one found with humans (human-associated, HA) and the other found with bats (bat-associated, BA). No unequivocal evidence of contemporary gene flow between these lineages has been found; however, it is unclear whether this is due to an inability to produce viable "hybrid" offspring. To address this question and determine the extent of compatibility between host-associated lineages, we set up mating crosses among populations of bed bugs based on both their host association (human-HA vs. bat-BA) and geographic origin (North America vs. Europe). Within-population fecundity was significantly higher for all HA populations (>1.7 eggs/day) than for BA populations (<1 egg/day). However, all within-population crosses, regardless of host association, had >92% egg hatch rates. Contrary to previous reports, in all interlineage crosses, successful matings occurred, fertile eggs were oviposited, and the F1 "hybrid" generation was found to be reproductively viable. In addition, we evaluated interpopulation genetic variation in Wolbachia among host-associated lineages. We did not find any clear patterns related to host association, nor did we observe a homogenization of Wolbachia lineages across populations that might explain a breakdown of reproductive incompatibility. These results indicate that while the HA and BA populations of C. lectularius represent genetically differentiated host-associated lineages, possibly undergoing sympatric speciation, this is in its incipient stage as they remain reproductively compatible. Other behavioral, physiological, and/or ecological factors likely maintain host-associated differentiation.
- Keywords
- Cimexlectularius, Wolbachia, host‐associated differentiation, reproduction, speciation,
- Publication type
- Journal Article MeSH
Determining the age of free-living insects, particularly of blood-sucking species, is important for human health because such knowledge critically influences the estimates of biting frequency and vectoring ability. Genetic age determination is currently not available. Pteridines gradually accumulate in the eyes of insects and their concentrations is the prevailing method. Despite of their stability, published extractions differ considerably, including for standards, for mixtures of pteridines and even for light conditions. This methodological inconsistency among studies is likely to influence age estimates severely and to hamper their comparability. Therefore we reviewed methodological steps across 106 studies to identify methodological denominators and results across studies. Second, we experimentally test how different pteridines vary in their age calibration curves in, common bed (Cimex lectularius) and bat bugs (C. pipistrelli). Here we show that the accumulation of particular pteridines varied between a) different populations and b) rearing temperatures but not c) with the impact of light conditions during extraction or d) the type of blood consumed by the bugs. To optimize the extraction of pteridines and measuring concentrations, we recommend the simultaneous measurement of more than one standard and subsequently to select those that show consistent changes over time to differentiate among age cohorts.
- MeSH
- Chromatography, Liquid methods MeSH
- Insect Vectors MeSH
- Eye metabolism MeSH
- Pteridines analysis isolation & purification metabolism MeSH
- Aging genetics metabolism MeSH
- Bedbugs genetics metabolism MeSH
- Tandem Mass Spectrometry methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Pteridines MeSH
Bed bugs (Cimex lectularius) provide a unique opportunity to understand speciation and host-associated divergence in parasites. Recently, two sympatric but genetically distinct lineages of C. lectularius were identified: one associated with humans and one associated with bats. We investigated two mechanisms that could maintain genetic differentiation in the field: reproductive compatibility (via mating crosses) and aggregation fidelity (via two-choice sheltering assays). Effects were assessed at the intra-lineage level (within human-associated bed bugs), inter-lineage level (between human- and bat-associated bed bugs), and inter-species level (between C. lectularius and Cimex pipistrelli [bat bug]). Contrary to previous reports, bed bugs were found to be reproductively compatible at both the intra- and inter-lineage levels, but not at the inter-species level (although three hybrids were produced, one of which developed into an adult). Lineage- and species-specific aggregation fidelity was only detected in 8% (4 out of 48) of the aggregation fidelity assays run. These results indicate that under laboratory conditions, host-associated lineages of bed bugs are reproductively compatible, and aggregation pheromones are not capable of preventing gene flow between lineages.
- MeSH
- Behavior, Animal physiology MeSH
- Chi-Square Distribution MeSH
- Reproduction genetics physiology MeSH
- Bedbugs genetics physiology MeSH
- Gene Flow genetics physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Cimicidae are temporary ectoparasites, which means that they cannot obtain food continuously. Both Cimex species examined here, Cimex lectularius (Linnaeus 1758) and Cimex pipistrelli (Jenyns 1839), can feed on a non-natal host, C. lectularius from humans on bats, C. pipistrelli on humans, but never naturally. The midgut of C. lectularius and C. pipistrelli is composed of three distinct regions-the anterior midgut (AMG), which has a sack-like shape, the long tube-shaped middle midgut (MMG), and the posterior midgut (PMG). The different ultrastructures of the AMG, MMG, and PMG in both of the species examined suggest that these regions must fulfill different functions in the digestive system. Ultrastructural analysis showed that the AMG fulfills the role of storing food and synthesizing and secreting enzymes, while the MMG is the main organ for the synthesis of enzymes, secretion, and the storage of the reserve material. Additionally, both regions, the AMG and MMG, are involved in water absorption in the digestive system of both Cimex species. The PMG is the part of the midgut in which spherites accumulate. The results of our studies confirm the suggestion of former authors that the structure of the digestive tract of insects is not attributed solely to diet but to the basic adaptation of an ancestor.
- Keywords
- Midgut epithelium, alimentary tract, digestive cells, secretory cells,
- MeSH
- Chiroptera MeSH
- Diet MeSH
- Humans MeSH
- Bedbugs anatomy & histology MeSH
- Feeding Behavior * MeSH
- Digestive System anatomy & histology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The common bed bug Cimex lectularius, has been recently shown to constitute two host races, which are likely in the course of incipient speciation. The human-associated lineage splits from the ancestral bat-associated species deep in the history of modern humans, likely even prior to the Neolithic Period and establishment of the first permanent human settlements. Hybridization experiments between these two lineages show that post-mating reproductive barriers are incomplete due to local variation. As mating takes place in off-host refugia marked by aggregation semiochemicals, the present investigation tested the hypothesis that bed bugs use these semiochemicals to differentiate between refugia marked by bat- and human-associated bed bugs; this would constitute a pre-copulation isolation mechanism. The preference for lineage-specific odors was tested using artificial shelters conditioned by a group of either male or female bed bugs. Adult males were assayed individually in four-choice assays that included two clean unconditioned control shelters. In most assays, bed bugs preferred to rest in conditioned shelters, with no apparent fidelity to shelters conditioned by their specific lineage. However, 51 % of the bat-associated males preferred unconditioned shelters over female-conditioned shelters of either lineage. Thus, bed bugs show no preferences for lineage-specific shelters, strongly suggesting that semiochemicals associated with shelters alone do not function in reproductive isolation.
- Keywords
- Aggregation behavior, Parasites, Pheromones, Pre-copulation reproduction isolation,
- MeSH
- Biological Assay MeSH
- Chiroptera parasitology MeSH
- Hybridization, Genetic MeSH
- Ectoparasitic Infestations parasitology veterinary MeSH
- Humans MeSH
- Odorants analysis MeSH
- Reproduction MeSH
- Bedbugs classification genetics physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Populations of bed bugs, Cimex lectularius, have increased in recent years spreading into numerous urban areas across the Western world and making them an increasingly important pest of the twenty-first century. Research into hybridization within and between different lineages of bed bugs can help us to understand processes of micro- and macro-evolution in these ectoparasites and may inform the control of this pest species. Hybridization experiments between two host lineages of bed bug (C. lectularius) from Central Europe (Czech Republic), those associated with humans and those with bats, were conducted under laboratory conditions. Number of eggs and early instars were compared between crosses of mixed host lineages (interspecific mating) with pairs from the same host lineage, those from the same locality and same lineage from different localities (intraspecific mating). While crosses within host lineages resulted in egg production and later instars, crosses between different host lineages were unsuccessful, although of the mated females possessed sperm in their mesospermaleges and/or seminal conceptacles. These crosses did not even result in egg production. Moreover, in the mixed lineage crosses, mortality rates in adults were higher (51 and 50% higher in bat and human lineage, respectively) than in those animals from the same lineage. Survival of adults was in pairs from the same locality slightly higher than in pairs from different localities and differed statistically. These results support the existence of post-mating barriers and show reproductive isolation between two lineages of C. lectularius. Bat and human host adaptations can promote evolving of such barriers and can be product of alloxenic speciation.
- MeSH
- Chiroptera MeSH
- Host Specificity MeSH
- Hybridization, Genetic * MeSH
- Ectoparasitic Infestations parasitology veterinary MeSH
- Humans MeSH
- Reproduction genetics physiology MeSH
- Bedbugs genetics physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH