Nejvíce citovaný článek - PubMed ID 24385146
The effect of helper epitopes and cellular localization of an antigen on the outcome of gene gun DNA immunization
PURPOSE: Aspartate β-hydroxylase (ASPH) contributes to carcinogenesis by promoting tumor cell proliferation, migration, and invasion. The enzymatic activity of ASPH can be inhibited by small molecule inhibitors that have been shown to have anti-metastatic activity in rodent models. ASPH has also been shown to inhibit the activation of natural killer (NK) cells. Therefore, this study aimed to investigate the effect of ASPH inhibition on the induction of anti-tumor immunity and to analyze the immune cells involved. METHODS: In the mouse TC-1/A9 model characterized by reversible downregulation of major histocompatibility class I (MHC-I) molecules, ASPH inhibition was combined with stimulation of innate and/or adaptive immunity, and the anti-tumor response was analyzed by evaluation of tumor growth, in vivo depletion of immune cell subpopulations, and ELISPOT assay. Characteristics of immune cells in the spleen and tumor were determined by flow cytometry and single-cell RNA sequencing (scRNA-seq). RESULTS: ASPH inhibition did not reduce tumor growth or promote the anti-tumor effect of innate immunity stimulation with the synthetic oligonucleotide ODN1826, but it significantly enhanced tumor growth reduction induced by DNA vaccination. In vivo immune cell depletion suggested that CD8+ T cells played a critical role in this immunity stimulated by combined treatment with ASPH inhibition and DNA vaccination. ASPH inhibition also significantly enhanced the specific response of CD8+ T cells induced by DNA vaccination in splenocytes, as detected by ELISPOT assay, and reduced the number of regulatory T cells in tumors. scRNA-seq confirmed the improved activation of CD8+ T cells in tumor-infiltrating cells after combined therapy with DNA vaccination and ASPH inhibition. It also showed activation of NK cells, macrophages, and dendritic cells in tumors. CONCLUSION: ASPH inhibition stimulated T-cell-mediated adaptive immunity induced by DNA vaccination. Different types of lymphoid and myeloid cells were likely involved in the activated immune response that was efficient against tumors with MHC-I downregulation, which are often resistant to T-cell-based therapies. Due to different types of activated immune cells, ASPH inhibition could improve immunotherapy for tumors with various MHC-I expression levels.
- Klíčová slova
- ASPH, adaptive immunity, cancer immunotherapy, scRNA-seq, tumor microenvironment,
- Publikační typ
- časopisecké články MeSH
Cancer immunotherapy is increasingly used in clinical practice, but its success rate is reduced by tumor escape from the immune system. This may be due to the genetic instability of tumor cells, which allows them to adapt to the immune response and leads to intratumoral immune heterogeneity. The study investigated spatial immune heterogeneity in the tumor microenvironment and its possible drivers in a mouse model of tumors induced by human papillomaviruses (HPV) following immunotherapy. Gene expression was determined by RNA sequencing and mutations by whole exome sequencing. A comparison of different tumor areas revealed heterogeneity in immune cell infiltration, gene expression, and mutation composition. While the mean numbers of mutations with every impact on gene expression or protein function were comparable in treated and control tumors, mutations with high or moderate impact were increased after immunotherapy. The genes mutated in treated tumors were significantly enriched in genes associated with ECM metabolism, degradation, and interactions, HPV infection and carcinogenesis, and immune processes such as antigen processing and presentation, Toll-like receptor signaling, and cytokine production. Gene expression analysis of DNA damage and repair factors revealed that immunotherapy upregulated Apobec1 and Apobec3 genes and downregulated genes related to homologous recombination and translesion synthesis. In conclusion, this study describes the intratumoral immune heterogeneity, that could lead to tumor immune escape, and suggests the potential mechanisms involved.
- Klíčová slova
- DNA repair, cancer immunotherapy, intratumoral heterogeneity, mutation, tumor microenvironment,
- MeSH
- imunoterapie * metody MeSH
- infekce papilomavirem imunologie virologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- mutace MeSH
- myši MeSH
- nádorové mikroprostředí imunologie genetika MeSH
- nádory * imunologie terapie genetika MeSH
- regulace genové exprese u nádorů MeSH
- sekvenování exomu MeSH
- únik nádoru z imunitní kontroly genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tumor-associated macrophages (TAMs) plentifully infiltrate the tumor microenvironment (TME), but their role in anti-tumor immunity is controversial. Depending on the acquired polarization, they can either support tumor growth or participate in the elimination of neoplastic cells. In this study, we analyzed the TME by RNA-seq and flow cytometry and examined TAMs after ex vivo activation. Tumors with normal and either reversibly or irreversibly decreased expression of major histocompatibility complex class I (MHC-I) molecules were induced with TC-1, TC-1/A9, and TC-1/dB2m cells, respectively. We found that combined immunotherapy (IT), composed of DNA immunization and the CpG oligodeoxynucleotide (ODN) ODN1826, evoked immune reactions in the TME of TC-1- and TC-1/A9-induced tumors, while the TME of TC-1/dB2m tumors was mostly immunologically unresponsive. TAMs infiltrated both tumor types with MHC-I downregulation, but only TAMs from TC-1/A9 tumors acquired the M1 phenotype upon IT and were cytotoxic in in vitro assay. The anti-tumor effect of combined IT was markedly enhanced by a blockade of the colony-stimulating factor-1 receptor (CSF-1R), but only against TC-1/A9 tumors. Overall, TAMs from tumors with irreversible MHC-I downregulation were resistant to the stimulation of cytotoxic activity. These data suggest the dissimilarity of TAMs from different tumor types, which should be considered when utilizing TAMs in cancer IT.
- Klíčová slova
- colony-stimulating factor-1, immunotherapy, macrophages, major histocompatibility complex, repolarization, tumor,
- Publikační typ
- časopisecké články MeSH
Programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) blockade is a promising therapy for various cancer types, but most patients are still resistant. Therefore, a larger number of predictive biomarkers is necessary. In this study, we assessed whether a loss-of-function mutation of the interferon (IFN)-γ receptor 1 (IFNGR1) in tumor cells can interfere with anti-PD-L1 therapy. For this purpose, we used the mouse oncogenic TC-1 cell line expressing PD-L1 and major histocompatibility complex class I (MHC-I) molecules and its TC-1/A9 clone with reversibly downregulated PD-L1 and MHC-I expression. Using the CRISPR/Cas9 system, we generated cells with deactivated IFNGR1 (TC-1/dIfngr1 and TC-1/A9/dIfngr1). In tumors, IFNGR1 deactivation did not lead to PD-L1 or MHC-I reduction on tumor cells. From potential inducers, mainly IFN-α and IFN-β enhanced PD-L1 and MHC-I expression on TC-1/dIfngr1 and TC-1/A9/dIfngr1 cells in vitro. Neutralization of the IFN-α/IFN-β receptor confirmed the effect of these cytokines in vivo. Combined immunotherapy with PD-L1 blockade and DNA vaccination showed that IFNGR1 deactivation did not reduce tumor sensitivity to anti-PD-L1. Thus, the impairment of IFN-γ signaling may not be sufficient for PD-L1 and MHC-I reduction on tumor cells and resistance to PD-L1 blockade, and thus should not be used as a single predictive marker for anti-PD-1/PD-L1 cancer therapy.
- Klíčová slova
- IFN-α, IFN-β, IFNGR1, MHC class I, PD-1/PD-L1, cancer, immune checkpoint therapy,
- MeSH
- antigeny CD274 antagonisté a inhibitory MeSH
- antigeny CD279 antagonisté a inhibitory MeSH
- experimentální nádory farmakoterapie imunologie metabolismus patologie MeSH
- imunoterapie MeSH
- interferon gama antagonisté a inhibitory MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buňky kultivované MeSH
- protinádorové látky imunologicky aktivní farmakologie MeSH
- transformované buněčné linie účinky léků imunologie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD274 MeSH
- antigeny CD279 MeSH
- Cd274 protein, mouse MeSH Prohlížeč
- interferon gama MeSH
- Pdcd1 protein, mouse MeSH Prohlížeč
- protinádorové látky imunologicky aktivní MeSH
Combined immunotherapy constitutes a novel, advanced strategy in cancer treatment. In this study, we investigated immunotherapy in the mouse TC-1/A9 model of human papillomavirus type 16 (HPV16)-associated tumors characterized by major histocompatibility complex class I (MHC-I) downregulation. We found that the induction of a significant anti-tumor response required a combination of DNA vaccination with the administration of an adjuvant, either the synthetic oligodeoxynucleotide ODN1826, carrying immunostimulatory CpG motifs, or α-galactosylceramide (α-GalCer). The most profound anti-tumor effect was achieved when these adjuvants were applied in a mix with a one-week delay relative to DNA immunization. Combined immunotherapy induced tumor infiltration with various subsets of immune cells contributing to tumor regression, of which cluster of differentiation (CD) 8⁺ T cells were the predominant subpopulation. In contrast, the numbers of tumor-associated macrophages (TAMs) were not markedly increased after immunotherapy but in vivo and in vitro results showed that they could be repolarized to an anti-tumor M1 phenotype. A blockade of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) immune checkpoint had a negligible effect on anti-tumor immunity and TAMs repolarization. Our results demonstrate a benefit of combined immunotherapy comprising the activation of both adaptive and innate immunity in the treatment of tumors with reduced MHC-I expression.
- Klíčová slova
- CpG ODN, DNA immunization, MHC-I, cancer immunotherapy, tumor-associated macrophages, α-galactosylceramide,
- MeSH
- adjuvancia imunologická terapeutické užití MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- down regulace MeSH
- experimentální nádory terapie MeSH
- galaktosylceramidy imunologie MeSH
- imunoterapie metody MeSH
- makrofágy imunologie MeSH
- MHC antigeny I. třídy imunologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- oligodeoxyribonukleotidy imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adjuvancia imunologická MeSH
- galaktosylceramidy MeSH
- MHC antigeny I. třídy MeSH
- oligodeoxyribonukleotidy MeSH