Nejvíce citovaný článek - PubMed ID 24609272
Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats
Aspartic acid exists in L- and D-isoforms (L-Asp and D-Asp). Most L-Asp is synthesized by mitochondrial aspartate aminotransferase from oxaloacetate and glutamate acquired by glutamine deamidation, particularly in the liver and tumor cells, and transamination of branched-chain amino acids (BCAAs), particularly in muscles. The main source of D-Asp is the racemization of L-Asp. L-Asp transported via aspartate-glutamate carrier to the cytosol is used in protein and nucleotide synthesis, gluconeogenesis, urea, and purine-nucleotide cycles, and neurotransmission and via the malate-aspartate shuttle maintains NADH delivery to mitochondria and redox balance. L-Asp released from neurons connects with the glutamate-glutamine cycle and ensures glycolysis and ammonia detoxification in astrocytes. D-Asp has a role in brain development and hypothalamus regulation. The hereditary disorders in L-Asp metabolism include citrullinemia, asparagine synthetase deficiency, Canavan disease, and dicarboxylic aminoaciduria. L-Asp plays a role in the pathogenesis of psychiatric and neurologic disorders and alterations in BCAA levels in diabetes and hyperammonemia. Further research is needed to examine the targeting of L-Asp metabolism as a strategy to fight cancer, the use of L-Asp as a dietary supplement, and the risks of increased L-Asp consumption. The role of D-Asp in the brain warrants studies on its therapeutic potential in psychiatric and neurologic disorders.
G protein-coupled receptor 81 (GPR81), a selective receptor for lactate, expresses in skeletal muscle cells, but the physiological role of GPR81 in skeletal muscle has not been fully elucidated. As it has been reported that the lactate administration induces muscle hypertrophy, the stimulation of GPR81 has been suggested to mediate muscle hypertrophy. To clarify the contribution of GPR81 activation in skeletal muscle hypertrophy, in the present study, we investigated the effect of GPR81 agonist administration on skeletal muscle mass in mice. Male C57BL/6J mice were randomly divided into control group and GPR81 agonist-administered group that received oral administration of the specific GPR81 agonist 3-Chloro-5-hydroxybenzoic acid (CHBA). In both fast-twitch plantaris and slow-twitch soleus muscles of mice, the protein expression of GPR81 was observed. Oral administration of CHBA to mice significantly increased absolute muscle weight and muscle weight relative to body weight in the two muscles. Moreover, both absolute and relative muscle protein content in the two muscles were significantly increased by CHBA administration. CHBA administration also significantly upregulated the phosphorylation level of p42/44 extracellular signal-regulated kinase-1/2 (ERK1/2) and p90 ribosomal S6 kinase (p90RSK). These observations suggest that activation of GRP81 stimulates increased the mass of two types of skeletal muscle in mice in vivo. Lactate receptor GPR81 may positively affect skeletal muscle mass through activation of ERK pathway.
- MeSH
- hypertrofie metabolismus MeSH
- kosterní svalová vlákna metabolismus MeSH
- kosterní svaly * metabolismus MeSH
- kyselina mléčná * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- receptory spřažené s G-proteiny MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina mléčná * MeSH
- receptory spřažené s G-proteiny MeSH
Studies from the last decades indicate that increased levels of ammonia contribute to muscle wasting in critically ill patients. The aim of the article is to examine the effects of two different causes of hyperammonemia-increased ATP degradation in muscles during strenuous exercise and impaired ammonia detoxification to urea due to liver cirrhosis. During exercise, glycolysis, citric acid cycle (CAC) activity, and ATP synthesis in muscles increase. In cirrhosis, due to insulin resistance and mitochondrial dysfunction, glycolysis, CAC activity, and ATP synthesis in muscles are impaired. Both during exercise and in liver cirrhosis, there is increased ammonia detoxification to glutamine (Glu + NH3 + ATP → Gln + ADP + Pi), increased drain of ketoglutarate (α-KG) from CAC for glutamate synthesis by α-KG-linked aminotransferases, glutamate, aspartate, and α-KG deficiency, increased oxidation of branched-chain amino acids (BCAA; valine, leucine, and isoleucine), and protein-energy wasting in muscles. It is concluded that ammonia can contribute to muscle wasting regardless of the cause of its increased levels and that similar strategies can be designed to increase muscle performance in athletes and reduce muscle loss in patients with hyperammonemia. The pros and cons of glutamate, α-KG, aspartate, BCAA, and branched-chain keto acid supplementation are discussed.
- Klíčová slova
- branched-chain amino acids, glutamic acid, glutamine, hyperammonemia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The aim of the article is to examine side effects of increased dietary intake of amino acids, which are commonly used as a dietary supplement. In addition to toxicity, mutagenicity and carcinogenicity, attention is focused on renal and gastrointestinal tract functions, ammonia production, and consequences of a competition with other amino acids for a carrier at the cell membranes and enzymes responsible for their degradation. In alphabetic order are examined arginine, beta-alanine, branched-chain amino acids, carnosine, citrulline, creatine, glutamine, histidine, beta -hydroxy- beta -methylbutyrate, leucine, and tryptophan. In the article is shown that enhanced intake of most amino acid supplements may not be risk-free and can cause a number of detrimental side effects. Further research is necessary to elucidate effects of high doses and long-term consumption of amino acid supplements on immune system, brain function, muscle protein balance, synthesis of toxic metabolites, and tumor growth and examine their suitability under certain circumstances. These include elderly, childhood, pregnancy, nursing a baby, and medical condition, such as diabetes and liver disease. Studies are also needed to examine adaptive response to a long-term intake of any substance and consequences of discontinuation of supplementation.
- MeSH
- aminokyseliny škodlivé účinky metabolismus MeSH
- arginin farmakologie MeSH
- dítě MeSH
- glutamin * metabolismus farmakologie MeSH
- histidin metabolismus MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- potravní doplňky * škodlivé účinky MeSH
- senioři MeSH
- těhotenství MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- senioři MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- arginin MeSH
- glutamin * MeSH
- histidin MeSH
Beta-hydroxy-beta-methyl butyrate (HMB) is a unique product of leucine catabolism with positive effects on protein balance. We have examined the effects of HMB (200 mg/kg/day via osmotic pump for 7 days) on rats with diabetes induced by streptozotocin (STZ, 100 mg/kg intraperitoneally). STZ induced severe diabetes associated with muscle wasting, decreased ATP in the liver, and increased α-ketoglutarate in muscles. In plasma, liver, and muscles increased branched-chain amino acids (BCAAs; valine, isoleucine, and leucine) and decreased serine. The decreases in mass and protein content of muscles and increases in BCAA concentration were more pronounced in extensor digitorum longus (fast-twitch muscle) than in soleus muscle (slow-twitch muscle). HMB infusion to STZ-treated animals increased glycemia and serine in the liver, decreased BCAAs in plasma and muscles, and decreased ATP in the liver and muscles. The effects of HMB on the weight and protein content of tissues were nonsignificant. We concluded that fast-twitch muscles are more sensitive to STZ than slow-twitch muscles and that HMB administration to STZ-treated rats has dual effects. Adjustments of BCAA concentrations in plasma and muscles and serine in the liver can be considered beneficial, whereas the increased glycemia and decreased ATP concentrations in the liver and muscles are detrimental.
- Klíčová slova
- ATP depletion, branched-chain amino acids, ketoglutarate, muscles, serine,
- MeSH
- aminokyseliny aplikace a dávkování farmakologie MeSH
- diabetes mellitus 1. typu chemicky indukované farmakoterapie metabolismus MeSH
- injekce intraperitoneální MeSH
- injekce subkutánní MeSH
- játra účinky léků metabolismus MeSH
- kosterní svaly účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- potkani Wistar MeSH
- streptozocin aplikace a dávkování MeSH
- valeráty aplikace a dávkování farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- beta-hydroxyisovaleric acid MeSH Prohlížeč
- streptozocin MeSH
- valeráty MeSH
A feared adverse effect of dyslipidaemia therapy by fibrates is myopathy. We examined the effect of fenofibrate (FF) on protein and amino acid metabolism. Rats received a low (50 mg/kg, LFFD) or high (300 mg/kg, HFFD) dose of FF or vehicle daily by oral gavage. Blood plasma, liver, and soleus and extensor digitorum longus muscles were analysed after 10 days. The FF-treated rats developed hepatomegaly associated with increased hepatic carnitine and ATP and AMP concentrations, decreased protein breakdown, and decreased concentrations of DNA and triglycerides. HFFD increased plasma ALT and AST activities. The weight and protein content of muscles in the HFFD group were lower compared with controls. In muscles of the LFFD group there were increased ATP and decreased AMP concentrations; in the HFFD group AMP was increased. In both FF-treated groups there were increased glycine, phenylalanine, and citrulline and decreased arginine and branched-chain keto acids (BCKA) in blood plasma. After HFFD there were decreased levels of branched-chain amino acids (BCAA; valine, leucine and isoleucine), methionine, and lysine and increased homocysteine. Decreased arginine and increased glycine concentrations were found in both muscles in FF-treated animals; in HFFD-treated animals lysine, methionine, and BCAA were decreased. We conclude that FF exerts protein-anabolic effects on the liver and catabolic effects on muscles. HFFD causes signs of hepatotoxicity, impairs energy and protein balance in muscles, and decreases BCAA, methionine, and lysine. It is suggested that increased glycine and decreased lysine and methionine levels are due to activated carnitine synthesis; decreased BCAA and BCKA levels are due to increased BCAA oxidation.
- Klíčová slova
- branched-chain amino acids, carnitine, fibrates, hepatomegaly, methionine,
- MeSH
- aminokyseliny účinky léků metabolismus MeSH
- energetický metabolismus účinky léků MeSH
- fenofibrát aplikace a dávkování MeSH
- glycin metabolismus MeSH
- hepatomegalie chemicky indukované metabolismus MeSH
- hypolipidemika aplikace a dávkování MeSH
- játra účinky léků metabolismus MeSH
- karnitin krev MeSH
- kosterní svaly účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- leucin metabolismus MeSH
- lidé MeSH
- lysin metabolismus MeSH
- methionin metabolismus MeSH
- oxidace-redukce MeSH
- potkani Wistar MeSH
- proteiny účinky léků metabolismus MeSH
- větvené aminokyseliny krev MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- fenofibrát MeSH
- glycin MeSH
- hypolipidemika MeSH
- karnitin MeSH
- leucin MeSH
- lysin MeSH
- methionin MeSH
- proteiny MeSH
- větvené aminokyseliny MeSH
Histidine (HIS) is an essential amino acid investigated for therapy of various diseases, used for tissue protection in transplantation and cardiac surgery, and as a supplement to increase muscle performance. The data presented in the review show that HIS administration may increase ammonia and affect the level of several amino acids. The most common are increased levels of alanine, glutamine, and glutamate and decreased levels of glycine and branched-chain amino acids (BCAA, valine, leucine, and isoleucine). The suggested pathogenic mechanisms include increased flux of HIS through HIS degradation pathway (increases in ammonia and glutamate), increased ammonia detoxification to glutamine and exchange of the BCAA with glutamine via L-transporter system in muscles (increase in glutamine and decrease in BCAA), and tetrahydrofolate depletion (decrease in glycine). Increased alanine concentration is explained by enhanced synthesis in extrahepatic tissues and impaired transamination in the liver. Increased ammonia and glutamine and decreased BCAA levels in HIS-treated subjects indicate that HIS supplementation is inappropriate in patients with liver injury. The studies investigating the possibilities to elevate carnosine (beta-alanyl-L-histidine) content in muscles show positive effects of beta-alanine and inconsistent effects of HIS supplementation. Several studies demonstrate HIS depletion due to enhanced availability of methionine, glutamine, or beta-alanine.
- MeSH
- aminokyseliny metabolismus MeSH
- amoniak metabolismus MeSH
- histidin farmakologie MeSH
- játra účinky léků metabolismus MeSH
- kosterní svaly účinky léků metabolismus MeSH
- lidé MeSH
- potravní doplňky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aminokyseliny MeSH
- amoniak MeSH
- histidin MeSH
Histidine (HIS) is investigated for therapy of various disorders and as a nutritional supplement to enhance muscle performance. We examined effects of HIS on amino acid and protein metabolism. Rats consumed HIS in a drinking water at a dose of 0.5 g/l (low HIS), 2 g/l (high HIS) or 0 g/l (control) for 4 weeks. At the end of the study, the animals were euthanized and blood plasma, liver, soleus (SOL), tibialis (TIB), and extensor digitorum longus (EDL) muscles analysed. HIS supplementation increased food intake, body weight and weights and protein contents of the liver and kidneys, but not muscles. In blood plasma there were increases in glucose, urea, and several amino acids, particularly alanine, proline, aspartate, and glutamate and in high HIS group, ammonia was increased. The main findings in the liver were decreased concentrations of methionine, aspartate, and glycine and increased alanine. In muscles of HIS-consuming animals increased alanine and glutamine. In high HIS group (in SOL and TIB) increased chymotrypsin-like activity of proteasome (indicates increased proteolysis); in SOL decreased anserine (beta-alanyl-N1-methylhistidine). We conclude that HIS supplementation increases ammonia production, alanine and glutamine synthesis in muscles, affects turnover of proteins and HIS-containing peptides, and increases requirements for glycine and methionine.
- MeSH
- aminokyseliny metabolismus MeSH
- histidin aplikace a dávkování MeSH
- játra metabolismus MeSH
- náhodné rozdělení MeSH
- potkani Wistar MeSH
- potravní doplňky MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- svaly metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- histidin MeSH
- proteasomový endopeptidasový komplex MeSH
Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids with protein anabolic properties, which have been studied in a number of muscle wasting disorders for more than 50 years. However, until today, there is no consensus regarding their therapeutic effectiveness. In the article is demonstrated that the crucial roles in BCAA metabolism play: (i) skeletal muscle as the initial site of BCAA catabolism accompanied with the release of alanine and glutamine to the blood; (ii) activity of branched-chain keto acid dehydrogenase (BCKD); and (iii) amination of branched-chain keto acids (BCKAs) to BCAAs. Enhanced consumption of BCAA for ammonia detoxification to glutamine in muscles is the cause of decreased BCAA levels in liver cirrhosis and urea cycle disorders. Increased BCKD activity is responsible for enhanced oxidation of BCAA in chronic renal failure, trauma, burn, sepsis, cancer, phenylbutyrate-treated subjects, and during exercise. Decreased BCKD activity is the main cause of increased BCAA levels and BCKAs in maple syrup urine disease, and plays a role in increased BCAA levels in diabetes type 2 and obesity. Increased BCAA concentrations during brief starvation and type 1 diabetes are explained by amination of BCKAs in visceral tissues and decreased uptake of BCAA by muscles. The studies indicate beneficial effects of BCAAs and BCKAs in therapy of chronic renal failure. New therapeutic strategies should be developed to enhance effectiveness and avoid adverse effects of BCAA on ammonia production in subjects with liver cirrhosis and urea cycle disorders. Further studies are needed to elucidate the effects of BCAA supplementation in burn, trauma, sepsis, cancer and exercise. Whether increased BCAA levels only markers are or also contribute to insulin resistance should be known before the decision is taken regarding their suitability in obese subjects and patients with type 2 diabetes. It is concluded that alterations in BCAA metabolism have been found common in a number of disease states and careful studies are needed to elucidate their therapeutic effectiveness in most indications.
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine that has been reported to have anabolic effects on protein metabolism. The aims of this article were to summarize the results of studies of the effects of HMB on skeletal muscle and to examine the evidence for the rationale to use HMB as a nutritional supplement to exert beneficial effects on muscle mass and function in various conditions of health and disease. The data presented here indicate that the beneficial effects of HMB have been well characterized in strength-power and endurance exercise. HMB attenuates exercise-induced muscle damage and enhances muscle hypertrophy and strength, aerobic performance, resistance to fatigue, and regenerative capacity. HMB is particularly effective in untrained individuals who are exposed to strenuous exercise and in trained individuals who are exposed to periods of high physical stress. The low effectiveness of HMB in strength-trained athletes could be due to the suppression of the proteolysis that is induced by the adaptation to training, which may blunt the effects of HMB. Studies performed with older people have demonstrated that HMB can attenuate the development of sarcopenia in elderly subjects and that the optimal effects of HMB on muscle growth and strength occur when it is combined with exercise. Studies performed under in vitro conditions and in various animal models suggest that HMB may be effective in treatment of muscle wasting in various forms of cachexia. However, there are few clinical reports of the effects of HMB on muscle wasting in cachexia; in addition, most of these studies evaluated the therapeutic potential of combinations of various agents. Therefore, it has not been possible to determine whether HMB was effective or if there was a synergistic effect. Although most of the endogenous HMB is produced in the liver, there are no reports regarding the levels and the effects of HMB supplementation in subjects with liver disease. Several studies have suggested that anabolic effects of HMB supplementation on skeletal muscle do not occur in healthy, non-exercising subjects. It is concluded that (i) HMB may be applied to enhance increases in the mass and strength of skeletal muscles in subjects who exercise and in the elderly and (ii) studies examining the effects of HMB administered alone are needed to obtain conclusions regarding the specific effectiveness in attenuating muscle wasting in various muscle-wasting disorders.
- Klíčová slova
- Cachexia, Exercise, HMB, Leucine, Sarcopenia, Supplements,
- MeSH
- kachexie dietoterapie patofyziologie MeSH
- kosterní svaly účinky léků fyziologie MeSH
- lidé MeSH
- potravní doplňky MeSH
- sarkopenie dietoterapie patofyziologie MeSH
- svalová atrofie dietoterapie patofyziologie MeSH
- svalová síla účinky léků MeSH
- syndrom chřadnutí dietoterapie patofyziologie MeSH
- valeráty aplikace a dávkování farmakologie MeSH
- zdraví MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- beta-hydroxyisovaleric acid MeSH Prohlížeč
- valeráty MeSH