Nejvíce citovaný článek - PubMed ID 24632562
The barbels of the subfamilies ´Poropuntinae´ and Smiliogastrinae within the family Cyprinidae play a significant role as a food source for fish in artisanal fisheries and are highly valued as ornamental fish in Thailand. In this study, we employed both conventional and molecular cytogenetics to analyze the karyotype of 15 fish species from two cyprinid lineages. All analyzed species had a diploid chromosome number of 2n = 50. Despite sharing the same 2n, our analyses revealed species-specific distribution patterns of the mapped microsatellite motifs [(CA)₁₅, (TA)₁₅, (CAC)₁₀, and (CGG)₁₀]. They were predominantly found at telomeric sites of all-to-few chromosomes. Additionally, some species exhibited a widespread distribution of the mapped microsatellites across the chromosomes while others showed no signal. These variations reflect the evolutionary divergence and chromosomal diversity within the cyprinids. Thus, our findings support the 2n stability in cyprinoid lineages while emphasizing the intrachromosomal evolutionary diversity accompanied by species-specific microsatellite distribution.
- Klíčová slova
- Chromosomal rearrangements, Family Cyprinidae, Fluorescence in situ hybridization (FISH), Microsatellites, comparative cytogenetics,
- Publikační typ
- časopisecké články MeSH
The Labeoninae subfamily is a highly diversified but demonstrably monophyletic lineage of cyprinid fishes comprising five tribes and six incertae sedis genera. This widely distributed assemblage contains some 48 genera and around 480 recognized species distributed in freshwaters of Africa and Asia. In this study, the karyotypes and other chromosomal properties of five Labeoninae species found in Thailand Labeo chrysophekadion (Labeonini) and Epalzeorhynchos bicolor, Epalzeorhynchos munense, Henicorhynchus siamensis, Thynnichthys thynnoides (´Osteochilini´) were examined using conventional and molecular cytogenetic protocols. Our results confirmed a diploid chromosome number (2n) invariably 2n = 50, but the ratio of uni- and bi-armed chromosomes was highly variable among their karyotypes, indicating extensive structural chromosomal rearrangements. Karyotype of L. chrysophekadion contained 10m+6sm+20st+14a, 32m+10sm+8st for H. siamensis, 20m+12sm+10st+8a in E. bicolor, 20m+8sm+8st+14a in E. munense, and 18m+24sm+8st in T. thynnoides. Except for H. siamensis, which had four sites of 5S rDNA sites, other species under study had only one chromosome pair with those sites. In contrast, only one pair containing 18S rDNA sites were found in the karyotypes of three species, whereas two sites were found in that of E. bicolor. These cytogenetic patterns indicated that the cytogenomic divergence patterns of these labeonine species largely corresponded to the inferred phylogenetic tree. In spite of the 2n stability, diverse patterns of rDNA and microsatellite distribution as well as their various karyotype structures demonstrated significant evolutionary differentiation of Labeoninae genomes as exemplified in examined species. Labeoninae offers a traditional point of view on the evolutionary forces fostering biological diversity, and the recent findings add new pieces to comprehend the function of structural chromosomal rearrangements in adaption and speciation.
- MeSH
- chromozomální aberace MeSH
- chromozomy * genetika MeSH
- Cyprinidae * genetika MeSH
- fylogeneze MeSH
- karyotyp MeSH
- molekulární evoluce MeSH
- ribozomální DNA genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Thajsko MeSH
- Názvy látek
- ribozomální DNA MeSH
Teleost fishes exhibit a breath-taking diversity of sex determination and differentiation mechanisms. They encompass at least nine sex chromosome systems with often low degree of differentiation, high rate of inter- and intra-specific variability, and frequent turnovers. Nevertheless, several mainly female heterogametic systems at an advanced stage of genetic differentiation and high evolutionary stability have been also found across teleosts, especially among Neotropical characiforms. In this study, we aim to characterize the ZZ/ZW sex chromosome system in representatives of the Triportheidae family (Triportheus auritus, Agoniates halecinus, and the basal-most species Lignobrycon myersi) and its sister clade Gasteropelecidae (Carnegiella strigata, Gasteropelecus levis, and Thoracocharax stellatus). We applied both conventional and molecular cytogenetic approaches including chromosomal mapping of 5S and 18S ribosomal DNA clusters, cross-species chromosome painting (Zoo-FISH) with sex chromosome-derived probes and comparative genomic hybridization (CGH). We identified the ZW sex chromosome system for the first time in A. halecinus and G. levis and also in C. strigata formerly reported to lack sex chromosomes. We also brought evidence for possible mechanisms underlying the sex chromosome differentiation, including inversions, repetitive DNA accumulation, and exchange of genetic material. Our Zoo-FISH experiments further strongly indicated that the ZW sex chromosomes of Triportheidae and Gasteropelecidae are homeologous, suggesting their origin before the split of these lineages (approx. 40-70 million years ago). Such extent of sex chromosome stability is almost exceptional in teleosts, and hence, these lineages afford a special opportunity to scrutinize unique evolutionary forces and pressures shaping sex chromosome evolution in fishes and vertebrates in general.
- Klíčová slova
- CGH, Zoo-FISH, chromosome rearrangements, rDNA, sex chromosome evolution,
- MeSH
- Characiformes * genetika MeSH
- lidé MeSH
- malování chromozomů MeSH
- mapování chromozomů MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy genetika MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Polyploidy, although still poorly explored, represents an important evolutionary event in several cyprinid clades. Herein, Catlocarpio siamensis and Probarbus jullieni - representatives of the paleotetraploid tribe Probarbini, were characterized both by conventional and molecular cytogenetic methods. RESULTS: Alike most other paleotetraploid cyprinids (with 2n = 100), both species studied here shared 2n = 98 but differed in karyotypes: C. siamensis displayed 18m + 34sm + 46st/a; NF = 150, while P. jullieni exhibited 26m + 14sm + 58st/a; NF = 138. Fluorescence in situ hybridization (FISH) with rDNA probes revealed two (5S) and eight (18S) signals in C. siamensis, respectively, and six signals for both probes in P. jullieni. FISH with microsatellite motifs evidenced substantial genomic divergence between both species. The almost doubled size of the chromosome pairs #1 in C. siamensis and #14 in P. jullieni compared to the rest of corresponding karyotypes indicated chromosomal fusions. CONCLUSION: Based on our findings, together with likely the same reduced 2n = 98 karyotypes in the remainder Probarbini species, we hypothesize that the karyotype 2n = 98 might represent a derived character, shared by all members of the Probarbini clade. Besides, we also witnessed considerable changes in the amount and distribution of certain repetitive DNA classes, suggesting complex post-polyploidization processes in this small paleotetraploid tribe.
- Klíčová slova
- Chromosomal markers, Cyprinidae, Fish cytogenetics, Microsatellites, rDNAs,
- Publikační typ
- časopisecké články MeSH
The magpie moth, Abraxas grossulariata, is an iconic species in which female heterogamety was discovered at the beginning of the 20th century. However, the sex chromosomes of this species have not yet been cytologically identified. We describe the sex chromosomes of A. grossulariata and its congener, A. sylvata. Although these species split only around 9.5 million years ago, and both species have the expected WZ/ZZ chromosomal system of sex determination and their sex chromosomes share the major ribosomal DNA (rDNA) representing the nucleolar organizer region (NOR), we found major differences between their karyotypes, including between their sex chromosomes. The species differ in chromosome number, which is 2n = 56 in A. grossularita and 2n = 58 in A. sylvata. In addition, A. grossularita autosomes exhibit massive autosomal blocks of heterochromatin, which is a very rare phenomenon in Lepidoptera, whereas the autosomes of A. sylvata are completely devoid of distinct heterochromatin. Their W chromosomes differ greatly. Although they are largely composed of female-specific DNA sequences, as shown by comparative genomic hybridization, cross-species W-chromosome painting revealed considerable sequence differences between them. The results suggest a relatively rapid molecular divergence of Abraxas W chromosomes by the independent spreading of female-specific repetitive sequences.
- Klíčová slova
- Abraxas, chromosome painting, comparative genomic hybridization, female heterogamety, heterochromatin, molecular divergence dating, ribosomal DNA (rDNA),
- Publikační typ
- časopisecké články MeSH
Abstract: Fishes exhibit the greatest diversity of species among vertebrates, offering a number of relevant models for genetic and evolutionary studies. The investigation of sex chromosome differentiation is a very active and striking research area of fish cytogenetics, as fishes represent one of the most vital model groups. Neotropical fish species show an amazing variety of sex chromosome systems, where different stages of differentiation can be found, ranging from homomorphic to highly differentiated sex chromosomes. Here, we draw attention on the impact of recent developments in molecular cytogenetic analyses that helped to elucidate many unknown questions about fish sex chromosome evolution, using excellent characiform models occurring in the Neotropical region, namely the Erythrinidae family and the Triportheus genus. While in Erythrinidae distinct XY and/or multiple XY-derived sex chromosome systems have independently evolved at least four different times, representatives of Triportheus show an opposite scenario, i.e., highly conserved ZZ/ZW system with a monophyletic origin. In both cases, recent molecular approaches, such as mapping of repetitive DNA classes, comparative genomic hybridization (CGH), and whole chromosome painting (WCP), allowed us to unmask several new features linked to the molecular composition and differentiation processes of sex chromosomes in fishes.
The main objectives of this study were to test: (1) whether the W-chromosome differentiation matches to species' evolutionary divergence (phylogenetic concordance) and (2) whether sex chromosomes share a common ancestor within a congeneric group. The monophyletic genus Triportheus (Characiformes, Triportheidae) was the model group for this study. All species in this genus so far analyzed have ZW sex chromosome system, where the Z is always the largest chromosome of the karyotype, whereas the W chromosome is highly variable ranging from almost homomorphic to highly heteromorphic. We applied conventional and molecular cytogenetic approaches including C-banding, ribosomal DNA mapping, comparative genomic hybridization (CGH) and cross-species whole chromosome painting (WCP) to test our questions. We developed Z- and W-chromosome paints from T. auritus for cross-species WCP and performed CGH in a representative species (T. signatus) to decipher level of homologies and rates of differentiation of W chromosomes. Our study revealed that the ZW sex chromosome system had a common origin, showing highly conserved Z chromosomes and remarkably divergent W chromosomes. Notably, the W chromosomes have evolved to different shapes and sequence contents within ~15-25 Myr of divergence time. Such differentiation highlights a dynamic process of W-chromosome evolution within congeneric species of Triportheus.
- MeSH
- biologická evoluce * MeSH
- Characidae genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- heterochromatin genetika MeSH
- malování chromozomů MeSH
- mapování chromozomů MeSH
- pohlavní chromozomy * MeSH
- ribozomální DNA genetika MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
- ribozomální DNA MeSH