Nejvíce citovaný článek - PubMed ID 24793478
Natural variation of histone modification and its impact on gene expression in the rat genome
The role of alternative promoter usage in tissue-specific gene expression has been well established; however, its role in complex diseases is poorly understood. We performed cap analysis of gene expression (CAGE) sequencing from the left ventricle of a rat model of hypertension, the spontaneously hypertensive rat (SHR), and a normotensive strain, Brown Norway to understand the role of alternative promoter usage in complex disease. We identified 26,560 CAGE-defined transcription start sites in the rat left ventricle, including 1,970 novel cardiac transcription start sites. We identified 28 genes with alternative promoter usage between SHR and Brown Norway, which could lead to protein isoforms differing at the amino terminus between two strains and 475 promoter switching events altering the length of the 5' UTR. We found that the shift in Insr promoter usage was significantly associated with insulin levels and blood pressure within a panel of HXB/BXH recombinant inbred rat strains, suggesting that hyperinsulinemia due to insulin resistance might lead to hypertension in SHR. Our study provides a preliminary evidence of alternative promoter usage in complex diseases.
- MeSH
- genetická transkripce genetika MeSH
- hypertenze * genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- potkani inbrední SHR MeSH
- promotorové oblasti (genetika) genetika MeSH
- sekvenční analýza RNA metody MeSH
- stanovení celkové genové exprese metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines. RESULTS: We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates. CONCLUSIONS: We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.
- Klíčová slova
- Cardiac hypertrophy, Complex disease, Genetic variation, HXB/BXH rat recombinant inbred panel, Ribosome biogenesis, Ribosome profiling, Ribosomopathy, Spontaneously hypertensive rats (SHR), Translational efficiency, trans QTL mapping,
- MeSH
- biogeneze organel MeSH
- genetická variace MeSH
- iniciace translace peptidového řetězce * MeSH
- kardiomegalie genetika metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- lokus kvantitativního znaku * MeSH
- malá jadérková RNA genetika metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- myokard metabolismus patologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- regulace genové exprese MeSH
- ribozomální proteiny genetika metabolismus MeSH
- ribozomy genetika metabolismus patologie MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sarkomery metabolismus patologie MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá jadérková RNA MeSH
- messenger RNA MeSH
- ribozomální proteiny MeSH
Cardiac fibrosis is a final common pathology in inherited and acquired heart diseases that causes cardiac electrical and pump failure. Here, we use systems genetics to identify a pro-fibrotic gene network in the diseased heart and show that this network is regulated by the E3 ubiquitin ligase WWP2, specifically by the WWP2-N terminal isoform. Importantly, the WWP2-regulated pro-fibrotic gene network is conserved across different cardiac diseases characterized by fibrosis: human and murine dilated cardiomyopathy and repaired tetralogy of Fallot. Transgenic mice lacking the N-terminal region of the WWP2 protein show improved cardiac function and reduced myocardial fibrosis in response to pressure overload or myocardial infarction. In primary cardiac fibroblasts, WWP2 positively regulates the expression of pro-fibrotic markers and extracellular matrix genes. TGFβ1 stimulation promotes nuclear translocation of the WWP2 isoforms containing the N-terminal region and their interaction with SMAD2. WWP2 mediates the TGFβ1-induced nucleocytoplasmic shuttling and transcriptional activity of SMAD2.
- MeSH
- dospělí MeSH
- extracelulární matrix - proteiny metabolismus MeSH
- fibróza genetika metabolismus MeSH
- genetická predispozice k nemoci * genetika MeSH
- genové regulační sítě * MeSH
- kardiomyopatie genetika metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- myši transgenní MeSH
- myši MeSH
- nemoci srdce genetika metabolismus MeSH
- protein - isoformy MeSH
- protein Smad2 genetika metabolismus MeSH
- regulace genové exprese MeSH
- senioři MeSH
- transformující růstový faktor beta metabolismus MeSH
- ubikvitinligasy genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- betaIG-H3 protein MeSH Prohlížeč
- extracelulární matrix - proteiny MeSH
- protein - isoformy MeSH
- protein Smad2 MeSH
- Smad2 protein, mouse MeSH Prohlížeč
- transformující růstový faktor beta MeSH
- ubikvitinligasy MeSH
- Wwp2 protein, mouse MeSH Prohlížeč
Background Electrocardiographic ( ECG ) parameters are regarded as intermediate phenotypes of cardiac arrhythmias. Insight into the genetic underpinnings of these parameters is expected to contribute to the understanding of cardiac arrhythmia mechanisms. Here we used HXB / BXH recombinant inbred rat strains to uncover genetic loci and candidate genes modulating ECG parameters. Methods and Results RR interval, PR interval, QRS duration, and QT c interval were measured from ECG s obtained in 6 male rats from each of the 29 available HXB / BXH recombinant inbred strains. Genes at loci displaying significant quantitative trait loci (QTL) effects were prioritized by assessing the presence of protein-altering variants, and by assessment of cis expression QTL ( eQTL ) effects and correlation of transcript abundance to the respective trait in the heart. Cardiac RNA -seq data were additionally used to generate gene co-expression networks. QTL analysis of ECG parameters identified 2 QTL for PR interval, respectively, on chromosomes 10 and 17. At the chromosome 10 QTL , cis- eQTL effects were identified for Acbd4, Cd300lg, Fam171a2, and Arhgap27; the transcript abundance in the heart of these 4 genes was correlated with PR interval. At the chromosome 17 QTL , a cis- eQTL was uncovered for Nhlrc1 candidate gene; the transcript abundance of this gene was also correlated with PR interval. Co-expression analysis furthermore identified 50 gene networks, 6 of which were correlated with PR interval or QRS duration, both parameters of cardiac conduction. Conclusions These newly identified genetic loci and gene networks associated with the ECG parameters of cardiac conduction provide a starting point for future studies with the potential of identifying novel mechanisms underlying cardiac electrical function.
- Klíčová slova
- bioinformatics, electrophysiology, rats,
- MeSH
- elektrokardiografie * MeSH
- genové regulační sítě * MeSH
- krysa rodu Rattus MeSH
- lokus kvantitativního znaku * MeSH
- nemoci převodního systému srdečního genetika patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The extent of translational control of gene expression in mammalian tissues remains largely unknown. Here we perform genome-wide RNA sequencing and ribosome profiling in heart and liver tissues to investigate strain-specific translational regulation in the spontaneously hypertensive rat (SHR/Ola). For the most part, transcriptional variation is equally apparent at the translational level and there is limited evidence of translational buffering. Remarkably, we observe hundreds of strain-specific differences in translation, almost doubling the number of differentially expressed genes. The integration of genetic, transcriptional and translational data sets reveals distinct signatures in 3'UTR variation, RNA-binding protein motifs and miRNA expression associated with translational regulation of gene expression. We show that a large number of genes associated with heart and liver traits in human genome-wide association studies are primarily translationally regulated. Capturing interindividual differences in the translated genome will lead to new insights into the genes and regulatory pathways underlying disease phenotypes.
- MeSH
- fenotyp MeSH
- hypertenze metabolismus MeSH
- játra metabolismus MeSH
- myokard metabolismus MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- proteom MeSH
- regulace genové exprese * MeSH
- ribozomy metabolismus MeSH
- sekvenční analýza RNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
BACKGROUND: ChIP-seq has become a routine method for interrogating the genome-wide distribution of various histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental sample and a reference sample, and to identify regions that show differential enrichment. However, comparative analysis of samples remains challenging for histone modifications with broad domains, such as heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like features. RESULTS: To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure, requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being either modified in both samples, unmodified in both samples or differentially modified between samples. We extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms competing methods in detecting functionally relevant differentially modified regions. CONCLUSION: histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. This makeshistoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is available from http://histonehmm.molgen.mpg.de .
- MeSH
- algoritmy * MeSH
- chromatinová imunoprecipitace MeSH
- genomika metody MeSH
- histony chemie genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- Markovovy řetězce MeSH
- myši MeSH
- posttranslační úpravy proteinů * MeSH
- software * MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony MeSH