Nejvíce citovaný článek - PubMed ID 24943832
Recurrent mutations refine prognosis in chronic lymphocytic leukemia
SF3B1 mutations are recurrent in chronic lymphocytic leukemia (CLL), particularly enriched in clinically aggressive stereotyped subset #2. To investigate their impact, we conducted RNA-sequencing of 18 SF3B1MUT and 17 SF3B1WT subset #2 cases and identified 80 significant alternative splicing events (ASEs). Notable ASEs concerned exon inclusion in the non-canonical BAF (ncBAF) chromatin remodeling complex subunit, BRD9, and splice variants in eight additional ncBAF complex interactors. Long-read RNA-sequencing confirmed the presence of splice variants, and extended analysis of 139 CLL cases corroborated their association with SF3B1 mutations. Overexpression of SF3B1K700E induced exon inclusion in BRD9, resulting in a novel splice isoform with an alternative C-terminus. Protein interactome analysis of the BRD9 splice isoform revealed augmented ncBAF complex interaction, while exhibiting decreased binding of auxiliary proteins, including SPEN, BRCA2, and CHD9. Additionally, integrative multi-omics analysis identified a ncBAF complex-bound gene quartet on chromosome 1 with higher expression levels and more accessible chromatin in SF3B1MUT CLL. Finally, Cancer Dependency Map analysis and BRD9 inhibition displayed BRD9 dependency and sensitivity in cell lines and primary CLL cells. In conclusion, spliceosome dysregulation caused by SF3B1 mutations leads to multiple ASEs and an altered ncBAF complex interactome, highlighting a novel pathobiological mechanism in SF3B1MUT CLL.
- MeSH
- alternativní sestřih MeSH
- chronická lymfatická leukemie * genetika patologie metabolismus MeSH
- fosfoproteiny * genetika metabolismus MeSH
- lidé MeSH
- mutace * MeSH
- proteiny obsahující bromodoménu MeSH
- restrukturace chromatinu * MeSH
- sestřihové faktory * genetika metabolismus MeSH
- spliceozomy * metabolismus genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BRD9 protein, human MeSH Prohlížeč
- fosfoproteiny * MeSH
- proteiny obsahující bromodoménu MeSH
- sestřihové faktory * MeSH
- SF3B1 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
Patients with chronic lymphocytic leukemia (CLL) exhibit diverse clinical outcomes. An expanding array of genetic tests is now employed to facilitate the identification of patients with high-risk disease and inform treatment decisions. These tests encompass molecular cytogenetic analysis, focusing on recurrent chromosomal alterations, particularly del(17p). Additionally, sequencing is utilized to identify TP53 mutations and to determine the somatic hypermutation status of the immunoglobulin heavy variable gene. Concurrently, a swift advancement of targeted treatment has led to the implementation of novel strategies for patients with CLL, including kinase and BCL2 inhibitors. This review explores both current and emerging diagnostic tests aimed at identifying high-risk patients who should benefit from targeted therapies. We outline existing treatment paradigms, emphasizing the importance of matching the right treatment to the right patient beyond genetic stratification, considering the crucial balance between safety and efficacy. We also take into consideration the practical and logistical issues when choosing a management strategy for each individual patient. Furthermore, we delve into the mechanisms underlying therapy resistance and stress the relevance of monitoring measurable residual disease to guide treatment decisions. Finally, we underscore the necessity of aggregating real-world data, adopting a global perspective, and ensuring patient engagement. Taken together, we argue that precision medicine is not the mere application of precision diagnostics and accessibility of precision therapies in CLL but encompasses various aspects of the patient journey (e.g., lifestyle exposures and comorbidities) and their preferences toward achieving true personalized medicine for patients with CLL.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management.
- MeSH
- chronická lymfatická leukemie * genetika MeSH
- fenotyp MeSH
- lidé MeSH
- mutace MeSH
- myeloidní diferenciační faktor 88 genetika MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- myeloidní diferenciační faktor 88 MeSH
Next-generation sequencing (NGS) has transitioned from research to clinical routine, yet the comparability of different technologies for mutation profiling remains an open question. We performed a European multicenter (n=6) evaluation of three amplicon-based NGS assays targeting 11 genes recurrently mutated in chronic lymphocytic leukemia. Each assay was assessed by two centers using 48 pre-characterized chronic lymphocytic leukemia samples; libraries were sequenced on the Illumina MiSeq instrument and bioinformatics analyses were centralized. Across all centers the median percentage of target reads ≥100x ranged from 94.2- 99.8%. In order to rule out assay-specific technical variability, we first assessed variant calling at the individual assay level i.e., pairwise analysis of variants detected amongst partner centers. After filtering for variants present in the paired normal sample and removal of PCR/sequencing artefacts, the panels achieved 96.2% (Multiplicom), 97.7% (TruSeq) and 90% (HaloPlex) concordance at a variant allele frequency (VAF) >0.5%. Reproducibility was assessed by looking at the inter-laboratory variation in detecting mutations and 107 of 115 (93% concordance) mutations were detected by all six centers, while the remaining eight variants (7%) were undetected by a single center. Notably, 6 of 8 of these variants concerned minor subclonal mutations (VAF <5%). We sought to investigate low-frequency mutations further by using a high-sensitivity assay containing unique molecular identifiers, which confirmed the presence of several minor subclonal mutations. Thus, while amplicon-based approaches can be adopted for somatic mutation detection with VAF >5%, after rigorous validation, the use of unique molecular identifiers may be necessary to reach a higher sensitivity and ensure consistent and accurate detection of low-frequency variants.
Next generation sequencing studies in Chronic lymphocytic leukemia (CLL) have revealed novel genetic variants that have been associated with disease characteristics and outcome. The aim of this study was to evaluate the prognostic value of recurrent molecular abnormalities in patients with CLL. Therefore, we assessed their incidences and associations with other clinical and genetic markers in the prospective multicenter COMPLEMENT1 trial (treatment naive patients not eligible for intensive treatment randomized to chlorambucil (CHL) vs. ofatumumab-CHL (O-CHL)). Baseline samples were available from 383 patients (85.6%) representative of the total trial cohort. Mutations were analyzed by amplicon-based targeted next generation sequencing (tNGS). In 52.2% of patients we found at least one mutation and the incidence was highest in NOTCH1 (17.0%), followed by SF3B1 (14.1%), ATM (11.7%), TP53 (10.2%), POT1 (7.0%), RPS15 (4.4%), FBXW7 (3.4%), MYD88 (2.6%) and BIRC3 (2.3%). While most mutations lacked prognostic significance, TP53 (HR2.02,p<0.01), SF3B1 (HR1.66,p=0.01) and NOTCH1 (HR1.39,p=0.03) were associated with inferior PFS in univariate analysis. Multivariate analysis confirmed the independent prognostic role of TP53 for PFS (HR1.71,p=0.04) and OS (HR2.78,p=0.02) and of SF3B1 for PFS only (HR1.52,p=0.02). Notably, NOTCH1 mutation status separates patients with a strong and a weak benefit from ofatumumab addition to CHL (NOTCH1wt:HR0.50,p<0.01, NOTCH1mut:HR0.81,p=0.45). In summary, TP53 and SF3B1 were confirmed as independent prognostic and NOTCH1 as a predictive factor for reduced ofatumumab efficacy in a randomized chemo (immune)therapy CLL trial. These results validate NGS-based mutation analysis in a multicenter trial and provide a basis for expanding molecular testing in the prognostic workup of patients with CLL. ClinicalTrials.gov registration number: NCT00748189.
- MeSH
- chronická lymfatická leukemie * diagnóza farmakoterapie genetika MeSH
- fosfoproteiny genetika MeSH
- lidé MeSH
- mutace MeSH
- prognóza MeSH
- prospektivní studie MeSH
- receptor Notch1 genetika MeSH
- sestřihové faktory genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfoproteiny MeSH
- receptor Notch1 MeSH
- sestřihové faktory MeSH
Most patients with chronic lymphocytic leukemia (CLL) are diagnosed with early-stage disease and managed with active surveillance. The individual course of patients with early-stage CLL is heterogeneous, and their probability of needing treatment is hardly anticipated at diagnosis. We aimed at developing an international prognostic score to predict time to first treatment (TTFT) in patients with CLL with early, asymptomatic disease (International Prognostic Score for Early-stage CLL [IPS-E]). Individual patient data from 11 international cohorts of patients with early-stage CLL (n = 4933) were analyzed to build and validate the prognostic score. Three covariates were consistently and independently correlated with TTFT: unmutated immunoglobulin heavy variable gene (IGHV), absolute lymphocyte count higher than 15 × 109/L, and presence of palpable lymph nodes. The IPS-E was the sum of the covariates (1 point each), and separated low-risk (score 0), intermediate-risk (score 1), and high-risk (score 2-3) patients showing a distinct TTFT. The score accuracy was validated in 9 cohorts staged by the Binet system and 1 cohort staged by the Rai system. The C-index was 0.74 in the training series and 0.70 in the aggregate of validation series. By meta-analysis of the training and validation cohorts, the 5-year cumulative risk for treatment start was 8.4%, 28.4%, and 61.2% among low-risk, intermediate-risk, and high-risk patients, respectively. The IPS-E is a simple and robust prognostic model that predicts the likelihood of treatment requirement in patients with early-stage CLL. The IPS-E can be useful in clinical management and in the design of early intervention clinical trials.
- MeSH
- chronická lymfatická leukemie genetika patologie terapie MeSH
- klinické zkoušky jako téma statistika a číselné údaje MeSH
- kombinovaná terapie MeSH
- lidé MeSH
- míra přežití MeSH
- mutace * MeSH
- nádorové biomarkery genetika MeSH
- následné studie MeSH
- nomogramy * MeSH
- prognóza MeSH
- progrese nemoci MeSH
- retrospektivní studie MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové biomarkery MeSH
BACKGROUND: While achieving prolonged remissions in other B cell-derived malignancies, chimeric antigen receptor (CAR) T cells still underperform when injected into patients with chronic lymphocytic leukemia (CLL). We studied the influence of genetics on CLL response to anti-CD19 CAR T-cell therapy. METHODS: First, we studied 32 primary CLL samples composed of 26 immunoglobulin heavy-chain gene variable (IGHV)-unmutated (9 ATM-mutated, 8 TP53-mutated, and 9 without mutations in ATM, TP53, NOTCH1 or SF3B1) and 6 IGHV-mutated samples without mutations in the above-mentioned genes. Then, we mimicked the leukemic microenvironment in the primary cells by '2S stimulation' through interleukin-2 and nuclear factor kappa B. Finally, CRISPR/Cas9-generated ATM-knockout and TP53-knockout clones (four and seven, respectively) from CLL-derived cell lines MEC1 and HG3 were used. All these samples were exposed to CAR T cells. In vivo survival study in NSG mice using HG3 wild-type (WT), ATM-knockout or TP53-knockout cells was also performed. RESULTS: Primary unstimulated CLL cells were specifically eliminated after >24 hours of coculture with CAR T cells. '2S' stimulated cells showed increased survival when exposed to CAR T cells compared with unstimulated ones, confirming the positive effect of this stimulation on CLL cells' in vitro fitness. After 96 hours of coculture, there was no difference in survival among the genetic classes. Finally, CAR T cells were specifically activated in vitro in the presence of target knockout cell lines as shown by the production of interferon-γ when compared with control (CTRL) T cells (p=0.0020), but there was no difference in knockout cells' survival. In vivo, CAR T cells prolonged the survival of mice injected with WT, TP53-knockout and ATM-knockout HG3 tumor cells as compared with CTRL T cells (p=0.0485, 0.0204 and <0.0001, respectively). When compared with ATM-knockout, TP53-knockout disease was associated with an earlier time of onset (p<0.0001), higher tumor burden (p=0.0002) and inefficient T-cell engraftment (p=0.0012). CONCLUSIONS: While in vitro no differences in survival of CLL cells of various genetic backgrounds were observed, CAR T cells showed a different effectiveness at eradicating tumor cells in vivo depending on the driver mutation. Early disease onset, high-tumor burden and inefficient T-cell engraftment, associated with TP53-knockout tumors in our experimental setting, ultimately led to inferior performance of CAR T cells.
- Klíčová slova
- genetics, haematology, immunology,
- MeSH
- antigeny CD19 terapeutické užití MeSH
- chimerické antigenní receptory imunologie MeSH
- chronická lymfatická leukemie genetika MeSH
- lidé MeSH
- myši MeSH
- T-lymfocyty imunologie MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD19 MeSH
- chimerické antigenní receptory MeSH
Chronic lymphocytic leukemia (CLL) patients with differential somatic hypermutation status of the immunoglobulin heavy variable genes, namely mutated or unmutated, display fundamental clinico-biological differences. Considering this, we assessed prognosis separately within mutated (M-CLL) and unmutated (U-CLL) CLL in 3015 patients, hypothesizing that the relative significance of relevant indicators may differ between these two categories. Within Binet A M-CLL patients, besides TP53 abnormalities, trisomy 12 and stereotyped subset #2 membership were equivalently associated with the shortest time-to-first-treatment and a treatment probability at five and ten years after diagnosis of 40% and 55%, respectively; the remaining cases exhibited 5-year and 10-year treatment probability of 12% and 25%, respectively. Within Binet A U-CLL patients, besides TP53 abnormalities, del(11q) and/or SF3B1 mutations were associated with the shortest time-to-first-treatment (5- and 10-year treatment probability: 78% and 98%, respectively); in the remaining cases, males had a significantly worse prognosis than females. In conclusion, the relative weight of indicators that can accurately risk stratify early-stage CLL patients differs depending on the somatic hypermutation status of the immunoglobulin heavy variable genes of each patient. This finding highlights the fact that compartmentalized approaches based on immunogenetic features are necessary to refine and tailor prognostication in CLL.
- MeSH
- čas zasáhnout při rozvinutí nemoci MeSH
- chromozomální aberace MeSH
- chronická lymfatická leukemie etiologie mortalita patologie terapie MeSH
- imunogenetika MeSH
- Kaplanův-Meierův odhad MeSH
- lidé MeSH
- mutace MeSH
- náchylnost k nemoci * MeSH
- nádorové biomarkery * MeSH
- prognóza MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- staging nádorů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové biomarkery * MeSH
Chronic lymphocytic leukemia is associated with a highly heterogeneous disease course in terms of clinical outcomes and responses to chemoimmunotherapy. This heterogeneity is partly due to genetic aberrations identified in chronic lymphocytic leukemia cells such as mutations of TP53 and/or deletions in chromosome 17p [del(17p)], resulting in loss of one TP53 allele. These aberrations are associated with markedly decreased survival and predict impaired response to chemoimmunotherapy thus being among the strongest predictive markers guiding treatment decisions in chronic lymphocytic leukemia. Clinical trials demonstrate the importance of accurately testing for TP53 aberrations [both del(17p) and TP53 mutations] before each line of treatment to allow for appropriate treatment decisions that can optimize patients' outcomes. The current report reviews the diagnostic methods to detect TP53 disruption better, the role of TP53 aberrations in treatment decisions and current therapies available for patients with chronic lymphocytic leukemia carrying these abnormalities. The standardization in sequencing technologies for accurate identification of TP53 mutations and the importance of continued evaluation of TP53 aberrations throughout initial and subsequent lines of therapy remain unmet clinical needs as new therapeutic alternatives become available.
- MeSH
- chromozomální delece * MeSH
- chronická lymfatická leukemie diagnóza genetika terapie MeSH
- lidé MeSH
- lidské chromozomy, pár 17 genetika MeSH
- mutace * MeSH
- nádorový supresorový protein p53 genetika MeSH
- přežití bez známek nemoci MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH
Chronic lymphocytic leukemia is a disease with up-regulated expression of the transmembrane tyrosine-protein kinase ROR1, a member of the Wnt/planar cell polarity pathway. In this study, we identified COBLL1 as a novel interaction partner of ROR1. COBLL1 shows clear bimodal expression with high levels in chronic lymphocytic leukemia patients with mutated IGHV and approximately 30% of chronic lymphocytic leukemia patients with unmutated IGHV. In the remaining 70% of chronic lymphocytic leukemia patients with unmutated IGHV, COBLL1 expression is low. Importantly, chronic lymphocytic leukemia patients with unmutated IGHV and high COBLL1 have an unfavorable disease course with short overall survival and time to second treatment. COBLL1 serves as an independent molecular marker for overall survival in chronic lymphocytic leukemia patients with unmutated IGHV. In addition, chronic lymphocytic leukemia patients with unmutated IGHV and high COBLL1 show impaired motility and chemotaxis towards CCL19 and CXCL12 as well as enhanced B-cell receptor signaling pathway activation demonstrated by increased PLCγ2 and SYK phosphorylation after IgM stimulation. COBLL1 expression also changes during B-cell maturation in non-malignant secondary lymphoid tissue with a higher expression in germinal center B cells than naïve and memory B cells. Our data thus suggest COBLL1 involvement not only in chronic lymphocytic leukemia but also in B-cell development. In summary, we show that expression of COBLL1, encoding novel ROR1-binding partner, defines chronic lymphocytic leukemia subgroups with a distinct response to microenvironmental stimuli, and independently predicts survival of chronic lymphocytic leukemia with unmutated IGHV.
- MeSH
- analýza přežití MeSH
- chronická lymfatická leukemie klasifikace diagnóza genetika mortalita MeSH
- lidé MeSH
- mutace MeSH
- pohyb buněk MeSH
- polarita buněk MeSH
- prognóza MeSH
- signální dráha Wnt MeSH
- sirotčí receptory podobné receptoru tyrosinkinasy metabolismus MeSH
- těžké řetězce imunoglobulinů genetika MeSH
- transkripční faktory metabolismus MeSH
- variabilní oblast imunoglobulinu genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- COBLL1 protein, human MeSH Prohlížeč
- ROR1 protein, human MeSH Prohlížeč
- sirotčí receptory podobné receptoru tyrosinkinasy MeSH
- těžké řetězce imunoglobulinů MeSH
- transkripční faktory MeSH
- variabilní oblast imunoglobulinu MeSH