Nejvíce citovaný článek - PubMed ID 25428743
Fatty acid composition indicates two types of metabolic syndrome independent of clinical and laboratory parameters
BACKGROUND: The role of fatty acids (FA) in the pathogenesis of insulin resistance and hyperlipidemia is a subject of intensive research. Several recent works have suggested cis-vaccenic acid (cVA) in plasma lipid compartments, especially in plasma phospholipids (PL) or erythrocyte membranes, could be associated with markers of insulin sensitivity and cardiovascular health. Nevertheless, not all the results of research work testify to these beneficial effects of cVA. Therefore, we decided to investigate the relations of proportion of cVA in plasma PL to markers of insulin resistance in hyperlipidemic men. SUBJECTS: In 231 men (median age 50) with newly diagnosed hyperlipidemia, we analyzed basic clinical parameters together with FA composition of plasma PL and stratified them according to the content of cVA into upper quartile (Q4) and lower quartile (Q1) groups. We examined also small control group of 50 healthy men. RESULTS: The individuals in Q4 differed from Q1 by lower plasma insulin (p < 0.05), HOMA-IR values (p < 0.01), and apolipoprotein B concentrations (p < 0.001), but by the higher total level of nonesterified FA (p < 0.01). Both groups had similar age, anthropometrical, and other lipid parameters. In plasma PL, the Q4 group had lower content of the sum of n-6 polyunsaturated FA, due to decrease of γ-linolenic and dihomo-γ-linolenic acids, whereas the content of monounsaturated FA (mainly oleic and palmitoleic) was in Q4 higher. CONCLUSIONS: Our results support hypothesis that plasma PL cVA could be associated with insulin sensitivity in men with hyperlipidemia.
- MeSH
- apolipoproteiny B krev MeSH
- biologické markery * krev MeSH
- dospělí MeSH
- fosfolipidy * krev MeSH
- hyperlipidemie * krev MeSH
- inzulin krev MeSH
- inzulinová rezistence * MeSH
- kyseliny olejové * krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- apolipoproteiny B MeSH
- biologické markery * MeSH
- cis-vaccenic acid MeSH Prohlížeč
- fosfolipidy * MeSH
- inzulin MeSH
- kyseliny olejové * MeSH
Long-chain polyunsaturated fatty acids (LC-PUFAs) play important roles in human health, from controlling inflammation to lipid and glucose homeostasis. In our previous study, which employed a cluster analysis of a plasma fatty acid (FA) pattern, we identified two clusters of metabolic syndrome (MetS) independent of clinical and biochemical parameters within the whole study group (controls together with metabolic syndrome (MetS) patients). FA desaturase (FADS) genes are the key regulators of LC-PUFA metabolism. The aim of this study was to analyze associations between FADS polymorphisms and clusters of MetS. The study group consisted of 188 controls and 166 patients with MetS. The first cluster contained 71 controls (CON1) and 109 MetS patients (MetS1). The second cluster consisted of 117 controls (CON2) and 57 MetS patients (MetS2). In comparison with MetS2, cluster MetS1 displayed a more adverse risk profile. Cluster CON1 had, in comparison with CON2, higher body weight and increased triacylglycerol levels (p < 0.05). We found that the FADS rs174537 (p < 0.001), rs174570 (p < 0.01), and rs174602 (p < 0.05) polymorphisms along with two inferred haplotypes had statistically significant genotype associations with the splitting of MetS into MetS1 and MetS2. Conversely, we observed no significant differences in the distribution of FADS polymorphisms between MetS and CON subjects, or between CON1 and CON2. These associations between FADS polymorphisms and two clusters of MetS (differing in waist circumference, HOMA-IR, lipolysis, and oxidative stress) implicate the important influence of genetic factors on the phenotypic manifestation of MetS.
- Klíčová slova
- FADS1, FADS2, cluster analysis, fatty acid pattern, haplotypes, metabolic syndrome, single-nucleotide polymorphism,
- Publikační typ
- časopisecké články MeSH
Metabolic syndrome is a prevalent disease resulting from an interplay of genomic component and the exposome. Parental diet has been shown to affect offspring metabolic health via multiple epigenetic mechanisms. Excess carbohydrate intake is one of the driving forces of the obesity and metabolic syndrome pandemics. This review summarizes the evidence for the effects of maternal carbohydrate (fructose, sucrose, glucose) overnutrition on the modulation of metabolic syndrome components in the offspring. Despite substantial discrepancies in experimental design, common effects of maternal carbohydrate overnutrition include increased body weight and hepatic lipid content of the "programmed" offspring. However, the administration of sucrose to several rat models leads to apparently favorable metabolic outcomes. Moreover, there is evidence for the role of genomic background in modulating the metabolic programming effect in the form of nutri-epigenomic interaction. Comprehensive, robust studies are needed to resolve the temporal, sex-specific, genetic, epigenetic and nutritional aspects of parental overnutrition in the intergenerational and transgenerational pathogenesis of metabolic syndrome.
- MeSH
- fruktosa MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metabolický syndrom * genetika MeSH
- nadměrná výživa * komplikace metabolismus MeSH
- rodiče MeSH
- zpožděný efekt prenatální expozice * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fruktosa MeSH
Dyslipidemia is common among patients on hemodialysis, but its etiology is not fully understood. Although changes in cholesterol homeostasis and fatty acid metabolism play an important role during dialysis, the interaction of these metabolic pathways has yet to be studied in sufficient detail. In this study, we enrolled 26 patients on maintenance hemodialysis treatment (high-volume hemodiafiltration, HV HDF) without statin therapy (17 men/9 women) and an age/gender-matched group of 26 individuals without signs of nephropathy. The HV-HDF group exhibited more frequent signs of cardiovascular disease, disturbed saccharide metabolism, and altered lipoprotein profiles, manifesting in lower HDL-C, and raised concentrations of IDL-C and apoB-48 (all p < 0.01). HV-HDF patients had higher levels of campesterol (p < 0.01) and β-sitosterol (p = 0.06), both surrogate markers of cholesterol absorption and unchanged lathosterol concentrations. Fatty acid (FA) profiles were changed mostly in cholesteryl esters, with a higher content of saturated and n-3 polyunsaturated fatty acids (PUFA) in the HV-HDF group. However, n-6 PUFA in cholesteryl esters were less abundant (p < 0.001) in the HV-HDF group. Hemodialysis during end-stage kidney disease induces changes associated with higher absorption of cholesterol and disturbed lipoprotein metabolism. Changes in fatty acid metabolism reflect the combined effect of renal insufficiency and its comorbidities, mostly insulin resistance.
- Klíčová slova
- chronic kidney disease, fatty acids, hemodialysis, hypolipidemic treatment, non-cholesterol sterols,
- Publikační typ
- časopisecké články MeSH