Nejvíce citovaný článek - PubMed ID 25537492
Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae)
Despite the widely accepted involvement of DNA methylation in the regulation of rDNA transcription, the relative participation of different cytosine methylation pathways is currently described only for a few model plants. Using PacBio, Bisulfite, and RNA sequencing; PCR; Southern hybridizations; and FISH, the epigenetic consequences of rDNA copy number variation were estimated in two T. porrifolius lineages, por1 and por2, the latter with more than twice the rDNA copy numbers distributed approximately equally between NORs on chromosomes A and D. The lower rDNA content in por1 correlated with significantly reduced (>90%) sizes of both D-NORs. Moreover, two (L and S) prominent rDNA variants, differing in the repetitive organization of intergenic spacers, were detected in por2, while only the S-rDNA variant was detected in por1. Transcriptional activity of S-rDNA in por1 was associated with secondary constriction of both A-NORs. In contrast, silencing of S-rDNA in por2 was accompanied by condensation of A-NORs, secondary constriction on D-NORs, and L-rDNA transcriptional activity, suggesting (i) bidirectional nucleolar dominance and (ii) association of S-rDNAs with A-NORs and L-rDNAs with D-NORs in T. porrifolius. Each S- and L-rDNA array was formed of several sub-variants differentiating both genetically (specific SNPs) and epigenetically (transcriptional efficiency and cytosine methylation). The most significant correlations between rDNA silencing and methylation were detected for symmetric CWG motifs followed by CG motifs. No correlations were detected for external cytosine in CCGs or asymmetric CHHs, where methylation was rather position-dependent, particularly for AT-rich variants. We conclude that variations in rDNA copy numbers in plant diploids can be accompanied by prompt epigenetic responses to maintain an appropriate number of active rDNAs. The methylation dynamics of CWGs are likely to be the most responsible for regulating silent and active rDNA states.
- Klíčová slova
- 35S rDNA copy number variations, CCGs and CHHs, CWGs, Tragopogon porrifolius ssp. porrifolius, bidirectional nucleolar dominance, methylation dynamics of CGs, transcriptional silencing/activation,
- MeSH
- chromozomy rostlin genetika MeSH
- cytosin * metabolismus MeSH
- epigeneze genetická MeSH
- genetická transkripce MeSH
- metylace DNA * MeSH
- regulace genové exprese u rostlin MeSH
- ribozomální DNA * genetika MeSH
- umlčování genů * MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytosin * MeSH
- ribozomální DNA * MeSH
Genome or genomic dominance (GD) is a phenomenon observed in hybrids when one parental genome becomes dominant over the other. It is manifested by the replacement of chromatin of the submissive genome by that of the dominant genome and by biased gene expression. Nucleolar dominance (ND) - the functional expression of only one parental set of ribosomal genes in hybrids - is another example of an intragenomic competitive process which, however, concerns ribosomal DNA only. Although GD and ND are relatively well understood, the nature and extent of their potential interdependence is mostly unknown. Here, we ask whether hybrids showing GD also exhibit ND and, if so, whether the dominant genome is the same. To test this, we used hybrids between Festuca and Lolium grasses (Festulolium), and between two Festuca species in which GD has been observed (with Lolium as the dominant genome in Festulolium and F. pratensis in interspecific Festuca hybrids). Using amplicon sequencing of ITS1 and ITS2 of the 45S ribosomal DNA (rDNA) cluster and molecular cytogenetics, we studied the organization and expression of rDNA in leaf tissue in five hybrid combinations, four generations and 31 genotypes [F. pratensis × L. multiflorum (F1, F2, F3, BC1), L. multiflorum × F. pratensis (F1), L. multiflorum × F. glaucescens (F2), L. perenne × F. pratensis (F1), F. glaucescens × F. pratensis (F1)]. We have found that instant ND occurs in Festulolium, where expression of Lolium-type rDNA reached nearly 100% in all F1 hybrids and was maintained through subsequent generations. Therefore, ND and GD in Festulolium are manifested by the same dominant genome (Lolium). We also confirmed the concordance between GD and ND in an interspecific cross between two Festuca species.
- Klíčová slova
- Festuca, Lolium, fluorescent in situ hybridization, genome dominance, genomic in situ hybridization, internal transcribed spacer, nucleolar dominance, ribosomal DNA,
- Publikační typ
- časopisecké články MeSH
Nucleolar dominance (ND) consists of the reversible silencing of 35S/45S rDNA loci inherited from one of the ancestors of an allopolyploid. The molecular mechanisms by which one ancestral rDNA set is selected for silencing remain unclear. We applied a combination of molecular (Southern blot hybridization and reverse-transcription cleaved amplified polymorphic sequence analysis), genomic (analysis of variants) and cytogenetic (fluorescence in situ hybridization) approaches to study the structure, expression and epigenetic landscape of 35S rDNA in an allotetraploid grass that exhibits ND, Brachypodium hybridum (genome composition DDSS), and its putative progenitors, Brachypodium distachyon (DD) and Brachypodium stacei (SS). In progenitor genomes, B. stacei showed a higher intragenomic heterogeneity of rDNA compared with B. distachyon. In all studied accessions of B. hybridum, there was a reduction in the copy number of S homoeologues, which was accompanied by their inactive transcriptional status. The involvement of DNA methylation in CG and CHG contexts in the silencing of the S-genome rDNA loci was revealed. In the B. hybridum allotetraploid, ND is stabilized towards the D-genome units, irrespective of the polyphyletic origin of the species, and does not seem to be influenced by homoeologous 35S rDNA ratios and developmental stage.
- Klíčová slova
- Brachypodium hybridum, 35S rDNA evolution, 35S rRNA gene expression, allopolyploidy, nucleolar dominance,
- MeSH
- Brachypodium genetika metabolismus MeSH
- chromozomy rostlin genetika MeSH
- genetické lokusy genetika MeSH
- genom rostlinný genetika MeSH
- geny rRNA genetika MeSH
- metylace DNA genetika MeSH
- molekulární evoluce MeSH
- polymorfismus genetický genetika MeSH
- rostlinné geny genetika MeSH
- Southernův blotting MeSH
- tetraploidie * MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Interspecific hybridization represents one of the main mechanisms of plant speciation. Merging of two genomes from different subspecies, species, or even genera is frequently accompanied by whole-genome duplication (WGD). Besides its evolutionary role, interspecific hybridization has also been successfully implemented in multiple breeding programs. Interspecific hybrids combine agronomic traits of two crop species or can be used to introgress specific loci of interests, such as those for resistance against abiotic or biotic stresses. The genomes of newly established interspecific hybrids (both allopolyploids and homoploids) undergo dramatic changes, including chromosome rearrangements, amplifications of tandem repeats, activation of mobile repetitive elements, and gene expression modifications. To ensure genome stability and proper transmission of chromosomes from both parental genomes into subsequent generations, allopolyploids often evolve mechanisms regulating chromosome pairing. Such regulatory systems allow only pairing of homologous chromosomes and hamper pairing of homoeologs. Despite such regulatory systems, several hybrid examples with frequent homoeologous chromosome pairing have been reported. These reports open a way for the replacement of one parental genome by the other. In this review, we provide an overview of the current knowledge of genomic changes in interspecific homoploid and allopolyploid hybrids, with strictly homologous pairing and with relaxed pairing of homoeologs.
- Klíčová slova
- allopolyploid, chromosome pairing, fertility, genome stability, homoeologous recombination, interspecific hybridization, whole-genome duplication,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Introduction: In plants, the multicopy genes encoding ribosomal RNA (rDNA) typically exhibit heterochromatic features and high level of DNA methylation. Here, we explored rDNA methylation in early diverging land plants from Bryophyta (15 species, 14 families) and Marchantiophyta (4 species, 4 families). DNA methylation was investigated by methylation-sensitive Southern blot hybridization in all species. We also carried out whole genomic bisulfite sequencing in Polytrichum formosum (Polytrichaceae) and Dicranum scoparium (Dicranaceae) and used available model plant methyloms (Physcomitrella patents and Marchantia polymorpha) to determine rDNA unit-wide methylation patterns. Chromatin structure was analyzed using fluorescence in situ hybridization (FISH) and immunoprecipitation (CHIP) assays. Results: In contrast to seed plants, bryophyte rDNAs were efficiently digested with methylation-sensitive enzymes indicating no or low levels of CG and CHG methylation in these loci. The rDNA methylom analyses revealed variation between species ranging from negligible (<3%, P. formosum, P. patens) to moderate (7 and 17% in M. polymorpha and D. scoparium, respectively) methylation levels. There were no differences between coding and noncoding parts of rDNA units and between gametophyte and sporophyte tissues. However, major satellite repeat and transposable elements were heavily methylated in P. formosum and D. scoparium. In P. formosum rDNA, the euchromatic H3K4m3 and heterochromatic H3K9m2 histone marks were nearly balanced contrasting the angiosperms data where H3K9m2 typically dominates rDNA chromatin. In moss interphase nuclei, rDNA was localized at the nucleolar periphery and its condensation level was high. Conclusions: Unlike seed plants, the rRNA genes seem to escape global methylation machinery in bryophytes. Distinct epigenetic features may be related to rDNA expression and the physiology of these early diverging plants that exist in haploid state for most of their life cycles.
- Klíčová slova
- bryophytes, cytosine methylation, epigenetics, genome evolution, histone marks, rDNA,
- Publikační typ
- časopisecké články MeSH
The intergenic spacer (IGS) of rDNA is frequently built of long blocks of tandem repeats. To estimate the intragenomic variability of such knotty regions, we employed PacBio sequencing of the Cucurbita moschata genome, in which thousands of rDNA copies are distributed across a number of loci. The rRNA coding regions are highly conserved, indicating intensive interlocus homogenization and/or high selection pressure. However, the IGS exhibits high intragenomic structural diversity. Two repeated blocks, R1 (300-1250 bp) and R2 (290-643 bp), account for most of the IGS variation. They exhibit minisatellite-like features built of multiple periodically spaced short GC-rich sequence motifs with the potential to adopt non-canonical DNA conformations, G-quadruplex-folded and left-handed Z-DNA. The mutual arrangement of these motifs can be used to classify IGS variants into five structural families. Subtle polymorphisms exist within each family due to a variable number of repeats, suggesting the coexistence of an enormous number of IGS variants. The substantial length and structural heterogeneity of IGS minisatellites suggests that the tempo of their divergence exceeds the tempo of the homogenization of rDNA arrays. As frequently occurring among plants, we hypothesize that their instability may influence transcription regulation and/or destabilize rDNA units, possibly spreading them across the genome.
- Klíčová slova
- Cucurbita moschata, DNA-minisatellite, intragenomic structural heterogeneity, non-canonical DNA conformations, ribosomal DNA intergenic spacer,
- MeSH
- Cucurbita genetika MeSH
- genetická variace * MeSH
- konformace nukleové kyseliny * MeSH
- mezerníky ribozomální DNA chemie genetika metabolismus MeSH
- minisatelitní repetice * MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mezerníky ribozomální DNA MeSH
The considerable genome size variation in Arabidopsis thaliana has been shown largely to be due to copy number variation (CNV) in 45S ribosomal RNA (rRNA) genes. Surprisingly, attempts to map this variation by means of genome-wide association studies (GWAS) failed to identify either of the two likely sources, namely the nucleolus organizer regions (NORs). Instead, GWAS implicated a trans-acting locus, as if rRNA gene CNV was a phenotype rather than a genotype. To explain these results, we investigated the inheritance and stability of rRNA gene copy number using the variety of genetic resources available in A. thaliana - F2 crosses, recombinant inbred lines, the multiparent advanced-generation inter-cross population, and mutation accumulation lines. Our results clearly show that rRNA gene CNV can be mapped to the NORs themselves, with both loci contributing equally to the variation. However, NOR size is unstably inherited, and dramatic copy number changes are visible already within tens of generations, which explains why it is not possible to map the NORs using GWAS. We did not find any evidence of trans-acting loci in crosses, which is also expected since changes due to such loci would take very many generations to manifest themselves. rRNA gene copy number is thus an interesting example of "missing heritability"-a trait that is heritable in pedigrees, but not in the general population.
- Klíčová slova
- 45S rRNA genes, Arabidopsis thaliana, natural variation, ribosomes,
- MeSH
- Arabidopsis genetika MeSH
- genetické lokusy MeSH
- genová dávka MeSH
- inbreeding MeSH
- křížení genetické MeSH
- organizátor jadérka genetika MeSH
- rekombinace genetická genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- RNA ribozomální genetika MeSH
- rostlinné geny * MeSH
- typy dědičnosti genetika MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální MeSH
- RNA, ribosomal, 45S MeSH Prohlížeč