chromosome pairing Dotaz Zobrazit nápovědu
Polyploids are species in which three or more sets of chromosomes coexist. Polyploidy frequently occurs in plants and plays a major role in their evolution. Based on their origin, polyploid species can be divided into two groups: autopolyploids and allopolyploids. The autopolyploids arise by multiplication of the chromosome sets from a single species, whereas allopolyploids emerge from the hybridization between distinct species followed or preceded by whole genome duplication, leading to the combination of divergent genomes. Having a polyploid constitution offers some fitness advantages, which could become evolutionarily successful. Nevertheless, polyploid species must develop mechanism(s) that control proper segregation of genetic material during meiosis, and hence, genome stability. Otherwise, the coexistence of more than two copies of the same or similar chromosome sets may lead to multivalent formation during the first meiotic division and subsequent production of aneuploid gametes. In this review, we aim to discuss the pathways leading to the formation of polyploids, the occurrence of polyploidy in the grass family (Poaceae), and mechanisms controlling chromosome associations during meiosis, with special emphasis on wheat.
- Klíčová slova
- Poaceae, chromosome pairing, homoeologous pairing, meiosis, polyploidy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
During meiosis, homologous chromosomes undergo a dramatic movement in order to correctly align. This is a critical meiotic event but the molecular properties of this 'chromosomal dance' still remainunclear. We identified DEB-1 - an orthologue of mammalian vinculin - as a new component of the mechanistic modules responsible for attaching the chromosomes to the nuclear envelope as apart of the LINC complex. In early meiotic nuclei of C. elegans, DEB-1 is localized to the nuclear periphery and alongside the synaptonemal complex of paired homologues. Upon DEB-1 depletion, chromosomes attached to SUN-1 foci remain highly motile until late pachytene. Although the initiation of homologue pairing started normally, irregularities in the formation of the synaptonemal complex occur, and these results in meiotic defects such as increased number of univalents at diakinesis and high embryonic lethality. Our data identify DEB-1 as a new player regulating chromosome dynamics and pairing during meiotic prophase I.
- Klíčová slova
- DEB-1, LINC complex, chromosome pairing, prophase I, vinculin,
- MeSH
- Caenorhabditis elegans genetika MeSH
- chromozomy genetika MeSH
- meióza genetika MeSH
- párování chromozomů genetika MeSH
- vinkulin genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vinkulin MeSH
A diploid-like pairing system prevents meiotic irregularities and improves the efficiency of gamete production in allopolyploid species. While the nature of the system is known in some polyploid crops including wheat, little is known about the control of chromosome pairing in polyploid fescues (Festuca spp.). In this work we studied chromosome pairing in allohexaploid F. arundinacea, its progenitors F. pratensis and F. glaucescens, and two intergeneric hybrids Lolium multiflorum (2x) x F. arundinacea (6x) and L. multiflorum (4x) x F. glaucescens (4x). The use of genomic in situ hybridization (GISH) permitted the analysis of homoeologous chromosome pairing and recombination of different genomes involved. We detected a diploid-like pairing system in polyploid fescues F. arundinacea and F. glaucescens, the latter being one of the progenitors of F. arundinacea. The pairing control system was absent in the second progenitor F. pratensis. Detailed analysis of intergeneric hybrids confirmed the presumed haploinsufficiency of the fescue system, which resulted in homoeologous pairing between all component genomes. This indicates that introgression of any specific chromosome segment from one genome to another is possible in all genome combinations. Our results not only contribute to the quest to discover the nature of the system controlling chromosome pairing in polyploid fescues, but may also have serious implications for design of hybrid breeding schemes in forage grasses.
The physical basis of non-Mendelian segregation of a sex-linked marker was studied in sex- chromosome mutant females of eight ASF ('abnormal segregating females') lines in the flour moth, Ephestia kuehniella. Electron microscopical analysis of microspread synaptonemal complexes revealed that in one line, the Z chromosome segment that contained the dz+ allele was translocated onto an autosome. The resulting quadrivalent visible in early female meiosis was 'corrected' into two bivalents in later stages. This explains autosomal inheritance of the sex chromosome marker in this strain. In the other seven ASF lines, the type of meiotic pairing of an additional fragment (Zdz+) of the Z chromosome was responsible for abnormal segregation of the marker gene. In several of these lines, Zdz+ contained a piece of the W chromosome in addition to the Z segment, as was confirmed by comparative genomic hybridization (CGH). Zdz+ formed three alternative pairing configurations with the original sex chromosomes: (i) a WZZdz+ trivalent, (ii) a WZ bivalent and a Zdz+ univalent or (iii) a ZZdz+ bivalent and a W univalent. In the most frequent WZZdz+ configuration, Zdz+ synapsed with Z and, consequently, segregated with W, simulating W linkage. This explains the predominant occurrence of the parental phenotypes in the progeny. Zdz+ univalents or W univalents, on the other hand, segregated randomly, resulting in both parental and nonparental phenotypes. In two of these lines, the Zdz+ was transmitted only to females. The results suggest that the W chromosome segment in Zdz+ of these lines contains a male-killing factor which makes it incompatible with male development. Our data provide direct evidence for the regular transmission of radiation-induced fragments from lepidopteran chromosomes through more than 50 generations. This is facilitated by the holokinetic nature of lepidopteran chromosomes. We conclude that Zdz+ fragments may persist as long as they possess active kinetochore elements.
- MeSH
- genetické markery * MeSH
- meióza fyziologie MeSH
- můry genetika fyziologie MeSH
- párování chromozomů fyziologie MeSH
- pohlavní chromozomy fyziologie ultrastruktura MeSH
- synaptonemální komplex ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genetické markery * MeSH
In terms of cytogenetics, entelegyne araneomorphs are the best studied clade of spiders. The typical karyotype of entelegyne males consists of acrocentric chromosomes, including 2 non-homologous X chromosomes. The present study is focused on the karyotype, nucleolus organising regions (NORs) and sex chromosome behaviour during meiosis of the entelegyne Wadicosa fidelis (Lycosidae). Preparations stained by Giemsa were used to study karyotype and meiosis. NORs were visualised by silver staining and fluorescence in situ hybridisation with 18S rDNA probe. The male karyotype consists of 28 acrocentric elements, including 2 X chromosomes. In contrast to the majority of other spiders, the male sex chromosomes pair during the major part of meiosis. Following an initial period of parallel pairing, the attachment of male sex chromosomes is restricted to centromeric areas and continues until metaphase II. Our study revealed an enormous number of NORs in the population from Galilee and indicates a considerable variability of NOR numbers in this population. The distal regions of 9 or 10 autosomal pairs contain NORs. The obtained data indicate the rapid spread of NORs in the karyotype of W. fidelis, which was presumably caused by ectopic recombinations and subsequent hybridisations of individuals with different NOR genotypes that produced heterozygotes.
- MeSH
- centromera genetika MeSH
- chromozom X genetika MeSH
- detekce genetických nosičů MeSH
- DNA sondy genetika MeSH
- druhová specificita MeSH
- karyotyp MeSH
- meióza MeSH
- metafáze MeSH
- organizátor jadérka genetika MeSH
- pavouci genetika MeSH
- polymorfismus genetický * MeSH
- rekombinace genetická MeSH
- RNA ribozomální 18S genetika MeSH
- spermatogeneze MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA sondy MeSH
- RNA ribozomální 18S MeSH
Most spiders exhibit a multiple sex chromosome system, X(1)X(2)0, whose origin has not been satisfactorily explained. Examination of the sex chromosome systems in the spider genus Malthonica (Agelenidae) revealed considerable diversity in sex chromosome constitution within this group. Besides modes X(1)X(2)0 (M. silvestris) and X(1)X(2)X(3)0 (M. campestris), a neo-X(1)X(2)X(3)X(4)X(5)Y system in M. ferruginea was found. Ultrastructural analysis of spread pachytene spermatocytes revealed that the X(1)X(2)0 and X(1)X(2)X(3)0 systems include a pair of homomorphic sex chromosomes. Multiple X chromosomes and the pair exhibit an end-to-end pairing, being connected by attachment plaques. The X(1)X(2)X(3)X(4)X(5)Y system of M. ferruginea arose by rearrangement between the homomorphic sex chromosome pair and an autosome. Multiple X chromosomes and the sex chromosome pair do not differ from autosomes in a pattern of constitutive heterochromatin. Ultrastructural data on sex chromosome pairing in other spiders indicate that the homomorphic sex chromosome pair forms an integral part of the spider sex chromosome systems. It is suggested that this pair represents ancestral sex chromosomes of spiders, which generated multiple X chromosomes by non-disjunctions. Structural differentiation of newly formed X chromosomes has been facilitated by heterochromatinization of sex chromosome bivalents observed in prophase I of spider females.
- MeSH
- biologická evoluce * MeSH
- meióza fyziologie MeSH
- párování chromozomů MeSH
- pavouci klasifikace genetika MeSH
- pohlavní chromozomy genetika ultrastruktura MeSH
- pruhování chromozomů MeSH
- transmisní elektronová mikroskopie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Chromosome pairing in meiosis usually starts in the vicinity of the telomere attachment to the nuclear membrane and congregation of telomeres in the leptotene bouquet is believed responsible for bringing homologue pairs together. In a heterozygote for an inversion of a rye (Secale cereale L.) chromosome arm in wheat, a distal segment of the normal homologue is capable of chiasmate pairing with its counterpart in the inverted arm, located near the centromere. Using 3D imaging confocal microscopy, we observed that some telomeres failed to be incorporated into the bouquet and occupied various positions throughout the entire volume of the nucleus, including the centromere pole. Rye telomeres appeared ca. 21 times more likely to fail to be included in the telomere bouquet than wheat telomeres. The frequency of the out-of-bouquet rye telomere position in leptotene was virtually identical to the frequency of telomeres deviating from Rabl's orientation in the nuclei of somatic cells, and was similar to the frequency of synapsis of the normal and inverted chromosome arms, but lower than the MI pairing frequency of segments of these two arms normally positioned across the volume of the nucleus. Out-of-position placement of the rye telomeres may be responsible for reduced MI pairing of rye chromosomes in hybrids with wheat and their disproportionate contribution to aneuploidy, but appears responsible for initiating chiasmate pairing of distantly positioned segments of homology in an inversion heterozygote.
- Klíčová slova
- 3D FISH, Centromere, Leptotene bouquet, Pairing initiation, Telomere,
- MeSH
- buněčné jádro genetika ultrastruktura MeSH
- centromera chemie ultrastruktura MeSH
- chiméra genetika MeSH
- chromozomální inverze * MeSH
- chromozomy rostlin chemie ultrastruktura MeSH
- druhová specificita MeSH
- heterozygot MeSH
- hybridizace in situ fluorescenční MeSH
- konfokální mikroskopie MeSH
- párování chromozomů MeSH
- počítačové zpracování obrazu statistika a číselné údaje MeSH
- profáze meiózy I * MeSH
- pšenice genetika ultrastruktura MeSH
- rostlinné buňky metabolismus ultrastruktura MeSH
- telomery chemie ultrastruktura MeSH
- žito genetika ultrastruktura MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Effective utilization of genetic diversity in wild relatives to improve wheat requires recombination between wheat and alien chromosomes. However, this is suppressed by the Pairing homoeologous gene, Ph1, on the long arm of wheat chromosome 5B. A deletion mutant of the Ph1 locus (ph1b) has been used widely to induce homoeologous recombination in wheat × alien hybrids. However, the original ph1b mutation, developed in Chinese Spring (CS) background has poor agronomic performance. Hence, alien introgression lines are first backcrossed with adapted wheat genotypes and after this step, alien chromosome segments are introduced into breeding lines. In this work, the ph1b mutation was transferred from two CSph1b mutants into winter wheat line Mv9kr1. Homozygous genotypes Mv9kr1 ph1b/ph1b exhibited improved plant and spike morphology compared to Chinese Spring. Flow cytometric chromosome analysis confirmed reduced DNA content of the mutant 5B chromosome in both wheat genotype relative to the wild type chromosome. The ph1b mutation in the Mv9kr1 genotype allowed wheat-alien chromosome pairing in meiosis of Mv9kr1ph1b_K × Aegilops biuncialis F1 hybrids, predominantly with the Mb-genome chromosomes of Aegilops relative to those of the Ub genome. High frequency of wheat-Aegilops chromosome interactions resulted in rearranged chromosomes identified in the new Mv9kr1ph1b × Ae. Biuncialis amphiploids, making these lines valuable sources for alien introgressions. The new Mv9kr1ph1b mutant genotype is a unique resource to support alien introgression breeding of hexaploid wheat.
- Klíčová slova
- Aegilops biuncialis, bread wheat, chromosome flow sorting, homoeologous recombination, in situ hybridization, meiotic chromosome pairing, ph1b mutant,
- Publikační typ
- časopisecké články MeSH
Edible banana cultivars are diploid, triploid, or tetraploid hybrids, which originated by natural cross hybridization between subspecies of diploid Musa acuminata, or between M. acuminata and diploid Musa balbisiana. The participation of two other wild diploid species Musa schizocarpa and Musa textilis was also indicated by molecular studies. The fusion of gametes with structurally different chromosome sets may give rise to progenies with structural chromosome heterozygosity and reduced fertility due to aberrant chromosome pairing and unbalanced chromosome segregation. Only a few translocations have been classified on the genomic level so far, and a comprehensive molecular cytogenetic characterization of cultivars and species of the family Musaceae is still lacking. Fluorescence in situ hybridization (FISH) with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones. The results revealed large differences in chromosome structure, discriminating individual accessions. These results permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones, which seem to be common among the polyploid banana accessions. New insights into the chromosome organization and structural chromosome changes will be a valuable asset in breeding programs, particularly in the selection of appropriate parents for cross hybridization.
- Klíčová slova
- chromosome translocation, fluorescence in situ hybridization, karyotype evolution, oligo painting FISH, structural chromosome heterozygosity,
- MeSH
- banánovník genetika růst a vývoj MeSH
- chromozomy rostlin genetika MeSH
- diploidie MeSH
- karyotyp MeSH
- malování chromozomů metody MeSH
- molekulární evoluce MeSH
- šlechtění rostlin MeSH
- tetraploidie MeSH
- translokace genetická MeSH
- triploidie MeSH
- zemědělské plodiny genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Hybrid sterility is one of the reproductive isolation mechanisms leading to speciation. Prdm9, the only known vertebrate hybrid-sterility gene, causes failure of meiotic chromosome synapsis and infertility in male hybrids that are the offspring of two mouse subspecies. Within species, Prdm9 determines the sites of programmed DNA double-strand breaks (DSBs) and meiotic recombination hotspots. To investigate the relation between Prdm9-controlled meiotic arrest and asynapsis, we inserted random stretches of consubspecific homology on several autosomal pairs in sterile hybrids, and analyzed their ability to form synaptonemal complexes and to rescue male fertility. Twenty-seven or more megabases of consubspecific (belonging to the same subspecies) homology fully restored synapsis in a given autosomal pair, and we predicted that two or more DSBs within symmetric hotspots per chromosome are necessary for successful meiosis. We hypothesize that impaired recombination between evolutionarily diverged chromosomes could function as one of the mechanisms of hybrid sterility occurring in various sexually reproducing species.
- Klíčová slova
- Prdm9, chromosomes, evolutionary biology, gene expression, genomics, homology-dependent meiotic chromosome pairing, mouse, speciation, synaptonemal complex,
- MeSH
- biologická evoluce * MeSH
- chiméra genetika MeSH
- chromozomy genetika MeSH
- dvouřetězcové zlomy DNA MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- hybridizace genetická MeSH
- infertilita genetika MeSH
- meióza genetika MeSH
- mužská infertilita genetika MeSH
- myši MeSH
- párování chromozomů genetika MeSH
- rekombinace genetická MeSH
- reprodukční izolace MeSH
- synaptonemální komplex genetika MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histonlysin-N-methyltransferasa MeSH
- prdm9 protein, mouse MeSH Prohlížeč