Most cited article - PubMed ID 25539760
Changes in activity of metabolic and regulatory pathways during germination of S. coelicolor
Streptomyces are of great interest in the pharmaceutical industry as they produce a plethora of secondary metabolites that act as antibacterial and antifungal agents. They may thrive on their own in the soil, or associate with other organisms, such as plants or invertebrates. Some soil-derived strains exhibit hemolytic properties when cultivated on blood agar, raising the question of whether hemolysis could be a virulence factor of the bacteria. In this work we examined hemolytic compound production in 23 β-hemolytic Streptomyces isolates; of these 12 were soil-derived, 10 were arthropod-associated, and 1 was plant-associated. An additional human-associated S. sp. TR1341 served as a control. Mass spectrometry analysis suggested synthesis of polyene molecules responsible for the hemolysis: candicidins, filipins, strevertene A, tetrafungin, and tetrin A, as well as four novel polyene compounds (denoted here as polyene A, B, C, and D) in individual liquid cultures or paired co-cultures. The non-polyene antifungal compounds actiphenol and surugamide A were also identified. The findings indicate that the ability of Streptomyces to produce cytolytic compounds (here manifested by hemolysis on blood agar) is an intrinsic feature of the bacteria in the soil environment and could even serve as a virulence factor when colonizing available host organisms. Additionally, a literature review of polyenes and non-polyene hemolytic metabolites produced by Streptomyces is presented.
- Keywords
- Actinomycetales, Streptomyces, hemolysis, polyene antibiotics, secondary metabolites, soil ecosystem, symbiosis,
- MeSH
- Anti-Bacterial Agents pharmacology metabolism MeSH
- Antifungal Agents pharmacology chemistry MeSH
- Virulence Factors metabolism MeSH
- Hemolysis MeSH
- Humans MeSH
- Polyenes pharmacology chemistry MeSH
- Streptomyces * chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Antifungal Agents MeSH
- Virulence Factors MeSH
- Polyenes MeSH
Regulatory RNAs control a number of physiological processes in bacterial cells. Here we report on a 6S-like RNA transcript (scr3559) that affects both development and antibiotic production in Streptomyces coelicolor. Its expression is enhanced during the transition to stationary phase. Strains that over-expressed the scr3559 gene region exhibited a shortened exponential growth phase in comparison with a control strain; accelerated aerial mycelium formation and spore maturation; alongside an elevated production of actinorhodin and undecylprodigiosin. These observations were supported by LC-MS analyses of other produced metabolites, including: germicidins, desferrioxamines, and coelimycin. A subsequent microarray differential analysis revealed increased expression of genes associated with the described morphological and physiological changes. Structural and functional similarities between the scr3559 transcript and 6S RNA, and its possible employment in regulating secondary metabolite production are discussed.
- Keywords
- 6S RNA, Streptomyces, antibiotics, secondary metabolism, small RNA,
- Publication type
- Journal Article MeSH
HrdB in streptomycetes is a principal sigma factor whose deletion is lethal. This is also the reason why its regulon has not been investigated so far. To overcome experimental obstacles, for investigating the HrdB regulon, we constructed a strain whose HrdB protein was tagged by an HA epitope. ChIP-seq experiment, done in 3 repeats, identified 2137 protein-coding genes organized in 337 operons, 75 small RNAs, 62 tRNAs, 6 rRNAs and 3 miscellaneous RNAs. Subsequent kinetic modeling of regulation of protein-coding genes with HrdB alone and with a complex of HrdB and a transcriptional cofactor RbpA, using gene expression time series, identified 1694 genes that were under their direct control. When using the HrdB-RbpA complex in the model, an increase of the model fidelity was found for 322 genes. Functional analysis revealed that HrdB controls the majority of gene groups essential for the primary metabolism and the vegetative growth. Particularly, almost all ribosomal protein-coding genes were found in the HrdB regulon. Analysis of promoter binding sites revealed binding motif at the -10 region and suggested the possible role of mono- or di-nucleotides upstream of the -10 element.
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- RNA, Bacterial genetics MeSH
- Chromatin Immunoprecipitation MeSH
- DNA, Bacterial chemistry metabolism MeSH
- DNA-Binding Proteins metabolism MeSH
- Gene Expression MeSH
- Genes, rRNA MeSH
- Kinetics MeSH
- Models, Genetic MeSH
- Promoter Regions, Genetic MeSH
- Gene Expression Regulation, Bacterial MeSH
- Regulon * MeSH
- RNA, Transfer genetics MeSH
- Sequence Analysis, DNA MeSH
- Sigma Factor metabolism MeSH
- Streptomyces coelicolor genetics metabolism MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- RNA, Bacterial MeSH
- DNA, Bacterial MeSH
- DNA-Binding Proteins MeSH
- HrdB protein, Streptomyces MeSH Browser
- RNA, Transfer MeSH
- Sigma Factor MeSH
Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing) and/or play a role in competitive microflora repression (quorum quenching) in their nature environments.
- Keywords
- Streptomyces, albaflavenone, cell signaling, chalcone, germicidin, secondary metabolism, spore germination,
- Publication type
- Journal Article MeSH
The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life - connected with spore formation and antibiotic production - is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell's signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces, while focusing on the aforementioned points.
- Keywords
- Streptomyces, cell wall, dormancy, gene expression, germination, metabolism, signaling, spore,
- Publication type
- Journal Article MeSH
- Review MeSH
cis-Antisense RNAs (asRNAs) provide very simple and effective gene expression control due to the perfect complementarity between regulated and regulatory transcripts. In Streptomyces, the antibiotic-producing clade, the antisense control system is not yet understood, although it might direct the organism's complex development. Initial studies in Streptomyces have found a number of asRNAs. Apart from this, hundreds of mRNAs have been shown to bind RNase III, the double strand-specific endoribonuclease. In this study, we tested 17 mRNAs that have been previously co-precipitated with RNase III for antisense expression. Our RACE mapping showed that all of these mRNAs possess cognate asRNA. Additional tests for antisense expression uncovered as-adpA, as-rnc, as3983, as-sigB, as-sigH, and as-sigR RNAs. Northern blots detected the expression profiles of 18 novel transcripts. Noteworthy, we also found that only a minority of asRNAs respond to the absence of RNase III enzyme by increasing their cellular levels. Our findings suggest that antisense expression is widespread in Streptomyces, including genes of such important developmental regulators, as AdpA, RNase III, and sigma factors.
- Keywords
- RNase III, Streptomyces, antibiotics, cis-antisense RNA, gene expression control,
- Publication type
- Journal Article MeSH