Nejvíce citovaný článek - PubMed ID 25924071
MiXCR: software for comprehensive adaptive immunity profiling
Allelic variability in the adaptive immune receptor loci, which harbor the gene segments that encode B cell and T cell receptors (BCR/TCR), is of critical importance for immune responses to pathogens and vaccines. Adaptive immune receptor repertoire sequencing (AIRR-seq) has become widespread in immunology research making it the most readily available source of information about allelic diversity in immunoglobulin (IG) and T cell receptor (TR) loci. Here, we present a novel algorithm for extrasensitive and specific variable (V) and joining (J) gene allele inference, allowing the reconstruction of individual high-quality gene segment libraries. The approach can be applied for inferring allelic variants from peripheral blood lymphocyte BCR and TCR repertoire sequencing data, including hypermutated isotype-switched BCR sequences, thus allowing high-throughput novel allele discovery from a wide variety of existing data sets. The developed algorithm is a part of the MiXCR software. We demonstrate the accuracy of this approach using AIRR-seq paired with long-read genomic sequencing data, comparing it to a widely used algorithm, TIgGER. We applied the algorithm to a large set of IG heavy chain (IGH) AIRR-seq data from 450 donors of ancestrally diverse population groups, and to the largest reported full-length TCR alpha and beta chain (TRA and TRB) AIRR-seq data set, representing 134 individuals. This allowed us to assess the genetic diversity within the IGH, TRA, and TRB loci in different populations and to establish a database of alleles of V and J genes inferred from AIRR-seq data and their population frequencies with free public access through VDJ.online database.
- MeSH
- alely * MeSH
- algoritmy * MeSH
- genetická variace MeSH
- lidé MeSH
- receptory antigenů B-buněk genetika imunologie MeSH
- receptory antigenů T-buněk genetika imunologie MeSH
- sekvenční analýza DNA metody MeSH
- software * MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- receptory antigenů B-buněk MeSH
- receptory antigenů T-buněk MeSH
Mycobacterium tuberculosis (Mtb) remains a major threat worldwide, although only a fraction of infected individuals develops tuberculosis (TB). TB susceptibility is shaped by multiple genetic factors, and we performed comparative immunological analysis of two mouse strains to uncover relevant mechanisms underlying susceptibility and resistance. C57BL/6 mice are relatively TB-resistant, whereas I/St mice are prone to develop severe TB, partly due to the MHC-II allelic variant that shapes suboptimal CD4+ T cell receptor repertoire. We investigated the repertoires of lung-infiltrating helper T cells and B cells at the progressed stage in both strains. We found that lung CD4+ T cell repertoires of infected C57BL/6 but not I/St mice contained convergent TCR clusters with functionally confirmed Mtb specificity. Transcriptomic analysis revealed a more prominent Th1 signature in C57BL/6, and expression of pro-inflammatory IL-16 in I/St lung-infiltrating helper T cells. The two strains also showed distinct Th2 signatures. Furthermore, the humoral response of I/St mice was delayed, less focused, and dominated by IgG/IgM isotypes, whereas C57BL/6 mice generated more Mtb antigen-focused IgA response. We conclude that the inability of I/St mice to produce a timely and efficient anti-Mtb adaptive immune responses arises from a suboptimal helper T cell landscape that also impacts the humoral response, leading to diffuse inflammation and severe disease.
- Klíčová slova
- B cells, CD4 + T cells, TB-susceptible mouse strain, TCR repertoire, immunoglobulins, transcriptomic signatures, tuberculosis,
- MeSH
- adaptivní imunita * genetika MeSH
- B-lymfocyty imunologie MeSH
- genetická predispozice k nemoci * MeSH
- modely nemocí na zvířatech MeSH
- Mycobacterium tuberculosis * imunologie MeSH
- myši inbrední C57BL * MeSH
- myši MeSH
- plíce imunologie patologie MeSH
- receptory antigenů T-buněk genetika imunologie MeSH
- tuberkulóza * imunologie genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- receptory antigenů T-buněk MeSH
Suppressive function of regulatory T cells (Treg) is dependent on signaling of their antigen receptors triggered by cognate self, dietary, or microbial peptides presented on MHC II. However, it remains largely unknown whether distinct or shared repertoires of Treg TCRs are mobilized in response to different challenges in the same tissue or the same challenge in different tissues. Here we use a fixed TCRβ chain FoxP3-GFP mouse model to analyze conventional (eCD4) and regulatory (eTreg) effector TCRα repertoires in response to six distinct antigenic challenges to the lung and skin. This model shows highly 'digital' repertoire behavior with easy-to-track challenge-specific TCRα CDR3 clusters. For both eCD4 and eTreg subsets, we observe challenge-specific clonal expansions yielding homologous TCRα clusters within and across animals and exposure sites, which are also reflected in the draining lymph nodes but not systemically. Some CDR3 clusters are shared across cancer challenges, suggesting a response to common tumor-associated antigens. For most challenges, eCD4 and eTreg clonal response does not overlap. Such overlap is exclusively observed at the sites of certain tumor challenges, and not systematically, suggesting transient and local tumor-induced eCD4=>eTreg plasticity. This transition includes a dominant tumor-responding eCD4 CDR3 motif, as well as characteristic iNKT TCRα CDR3. In addition, we examine the homeostatic tissue residency of clonal eTreg populations by excluding the site of challenge from our analysis. We demonstrate that distinct CDR3 motifs are characteristic of eTreg cells residing in particular lymphatic tissues, regardless of the challenge. This observation reveals the tissue-resident, antigen-specific clonal Treg populations.
- Klíčová slova
- CD4+ T cells, TCR repertoire, antigenic specificity, homing, immunology, inflammation, lung challenges, mouse, treg,
- MeSH
- buněčné klony MeSH
- CD4-pozitivní T-lymfocyty * MeSH
- myši MeSH
- peptidy MeSH
- receptory antigenů T-buněk genetika MeSH
- regulační T-lymfocyty * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidy MeSH
- receptory antigenů T-buněk MeSH
Adenovirus vaccines, particularly the COVID-19 Ad5-nCoV adenovirus vaccine, have emerged as promising tools in the fight against infectious diseases. In this study, we investigated the structure of the T cell response to the Spike protein of the SARS-CoV-2 virus used in the COVID-19 Ad5-nCoV adenoviral vaccine in a phase 3 clinical trial (NCT04540419). In 69 participants, we collected peripheral blood samples at four time points after vaccination or placebo injection. Sequencing of T cell receptor repertoires from Spike-stimulated T cell cultures at day 14 from 17 vaccinated revealed a more diverse CD4+ T cell repertoire compared to CD8+. Nevertheless, CD8+ clonotypes accounted for more than half of the Spike-specific repertoire. Our longitudinal analysis showed a peak T cell response at day 14, followed by a decline until month 6. Remarkably, multiple T cell clonotypes persisted for at least 6 months after vaccination, as demonstrated by ex vivo stimulation. Examination of CDR3 regions revealed homologous sequences in both CD4+ and CD8+ clonotypes, with major CD8+ clonotypes sharing high similarity with annotated sequences specific for the NYNYLYRLF peptide, suggesting potential immunodominance. In conclusion, our study demonstrates the immunogenicity of the Ad5-nCoV adenoviral vaccine and highlights its ability to induce robust and durable T cell responses. These findings provide valuable insight into the efficacy of the vaccine against COVID-19 and provide critical information for ongoing efforts to control infectious diseases.
- Klíčová slova
- SARS-CoV-2, T cell, T cell receptor, TCR sequencing, adenoviral vaccine, spike protein, vaccination,
- MeSH
- Adenoviridae genetika MeSH
- COVID-19 * prevence a kontrola MeSH
- glykoprotein S, koronavirus MeSH
- infekční nemoci * MeSH
- lidé MeSH
- SARS-CoV-2 MeSH
- T-lymfocyty MeSH
- vakcíny proti COVID-19 MeSH
- vakcíny * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykoprotein S, koronavirus MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
- vakcíny proti COVID-19 MeSH
- vakcíny * MeSH
Autoimmunity is intrinsically driven by memory T and B cell clones inappropriately targeted at self-antigens. Selective depletion or suppression of self-reactive T cells remains a holy grail of autoimmune therapy, but disease-associated T cell receptors (TCRs) and cognate antigenic epitopes remained elusive. A TRBV9-containing CD8+ TCR motif was recently associated with the pathogenesis of ankylosing spondylitis, psoriatic arthritis and acute anterior uveitis, and cognate HLA-B*27-presented epitopes were identified. Following successful testing in nonhuman primate models, here we report human TRBV9+ T cell elimination in ankylosing spondylitis. The patient achieved remission within 3 months and ceased anti-TNF therapy after 5 years of continuous use. Complete remission has now persisted for 4 years, with three doses of anti-TRBV9 administered per year. We also observed a profound improvement in spinal mobility metrics and the Bath Ankylosing Spondylitis Metrology Index (BASMI). This represents a possibly curative therapy of an autoimmune disease via selective depletion of a TRBV-defined group of T cells. The anti-TRBV9 therapy could potentially be applicable to other HLA-B*27-associated spondyloarthropathies. Such targeted elimination of the underlying cause of the disease without systemic immunosuppression could offer a new generation of safe and efficient therapies for autoimmunity.
- MeSH
- ankylózující spondylitida * farmakoterapie MeSH
- epitopy MeSH
- HLA-B antigeny MeSH
- imunoterapie MeSH
- inhibitory TNF terapeutické užití MeSH
- lidé MeSH
- receptory antigenů T-buněk genetika terapeutické užití MeSH
- T-lymfocyty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- epitopy MeSH
- HLA-B antigeny MeSH
- inhibitory TNF MeSH
- receptory antigenů T-buněk MeSH
Transcriptome sequencing has become common in cancer research, resulting in the generation of a substantial volume of RNA sequencing (RNA-Seq) data. The ability to extract immune repertoires from these data is crucial for obtaining information on infiltrating T- and B-lymphocyte clones when dedicated amplicon T-cell/B-cell receptors sequencing (TCR-Seq/BCR-Seq) methods are unavailable. In response to this demand, several dedicated computational methods have been developed, including MiXCR, TRUST and ImRep. In the recent publication in Briefings in Bioinformatics, Peng et al. have conducted an intensive, systematic comparison of the three previously mentioned tools. Although their effort is commendable, we do have a few constructive critiques regarding technical elements of their analysis.
- Klíčová slova
- RNA sequencing, T-cell receptor, TCR sequencing, benchmarking, cancer immunology, computational methods, immunogenomics,
- MeSH
- B-lymfocyty MeSH
- benchmarking * MeSH
- lidé MeSH
- nádory * genetika MeSH
- receptory antigenů T-buněk genetika MeSH
- sekvenční analýza RNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- receptory antigenů T-buněk MeSH
T-cell receptor (TR) diversity of the variable domains is generated by recombination of both the alpha (TRA) and beta (TRB) chains. The textbook process of TRB chain production starts with TRBD and TRBJ gene rearrangement, followed by the rearrangement of a TRBV gene to the partially rearranged D-J gene. Unsuccessful V-D-J TRB rearrangements lead to apoptosis of the cell. Here, we performed deep sequencing of the poorly explored pool of partial TRBD1-TRBD2 rearrangements in T-cell genomic DNA. We reconstructed full repertoires of human partial TRBD1-TRBD2 rearrangements using novel sequencing and validated them by detecting V-D-J recombination-specific byproducts: excision circles containing the recombination signal (RS) joint 5'D2-RS - 3'D1-RS. Identified rearrangements were in compliance with the classical 12/23 rule, common for humans, rats, and mice and contained typical V-D-J recombination footprints. Interestingly, we detected a bimodal distribution of D-D junctions indicating two active recombination sites producing long and short D-D rearrangements. Long TRB D-D rearrangements with two D-regions are coding joints D1-D2 remaining classically on the chromosome. The short TRB D-D rearrangements with no D-region are signal joints, the coding joint D1-D2 being excised from the chromosome. They both contribute to the TRB V-(D)-J combinatorial diversity. Indeed, short D-D rearrangements may be followed by direct V-J2 recombination. Long D-D rearrangements may recombine further with J2 and V genes forming partial D1-D2-J2 and then complete V-D1-D2-J2 rearrangement. Productive TRB V-D1-D2-J2 chains are present and expressed in thousands of clones of human antigen-experienced memory T cells proving their capacity for antigen recognition and actual participation in the immune response.
- Klíčová slova
- NGS - next generation sequencing, T cell, TRB repertoire, Thymus, VDJ recombination,
- MeSH
- apoptóza * MeSH
- buněčné klony MeSH
- chromozomální aberace MeSH
- geny TcR beta * MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- paměťové T-buňky MeSH
- V(D)J rekombinace * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: One of the current hypotheses to explain the proinflammatory immune response in IBD is a dysregulated T cell reaction to yet unknown intestinal antigens. As such, it may be possible to identify disease-associated T cell clonotypes by analysing the peripheral and intestinal T-cell receptor (TCR) repertoire of patients with IBD and controls. DESIGN: We performed bulk TCR repertoire profiling of both the TCR alpha and beta chains using high-throughput sequencing in peripheral blood samples of a total of 244 patients with IBD and healthy controls as well as from matched blood and intestinal tissue of 59 patients with IBD and disease controls. We further characterised specific T cell clonotypes via single-cell RNAseq. RESULTS: We identified a group of clonotypes, characterised by semi-invariant TCR alpha chains, to be significantly enriched in the blood of patients with Crohn's disease (CD) and particularly expanded in the CD8+ T cell population. Single-cell RNAseq data showed an innate-like phenotype of these cells, with a comparable gene expression to unconventional T cells such as mucosal associated invariant T and natural killer T (NKT) cells, but with distinct TCRs. CONCLUSIONS: We identified and characterised a subpopulation of unconventional Crohn-associated invariant T (CAIT) cells. Multiple evidence suggests these cells to be part of the NKT type II population. The potential implications of this population for CD or a subset thereof remain to be elucidated, and the immunophenotype and antigen reactivity of CAIT cells need further investigations in future studies.
- Klíčová slova
- Crohn's disease, IBD, T-cell receptor, alpha beta T cells, mucosal immunology,
- MeSH
- CD8-pozitivní T-lymfocyty MeSH
- Crohnova nemoc * genetika MeSH
- lidé MeSH
- NKT buňky * MeSH
- receptory antigenů T-buněk alfa-beta genetika MeSH
- receptory antigenů T-buněk metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory antigenů T-buněk alfa-beta MeSH
- receptory antigenů T-buněk MeSH
Mature T cells are selected for recognizing self-antigens with low to intermediate affinity in the thymus. Recently, the relative differences in self-reactivity among individual T-cell clones were appreciated as important factors regulating their fate and immune response, but the role of self-reactivity in T-cell biology is incompletely understood. We addressed the role of self-reactivity in T-cell diversity by generating an atlas of mouse peripheral CD8+ T cells, which revealed two unconventional populations of antigen-inexperienced T cells. In the next step, we examined the steady-state phenotype of monoclonal T cells with various levels of self-reactivity. Highly self-reactive clones preferentially differentiate into antigen-inexperienced memory-like cells, but do not form a population expressing type I interferon-induced genes, showing that these two subsets have unrelated origins. The functional comparison of naïve monoclonal CD8+ T cells specific to the identical model antigen did not show any correlation between the level of self-reactivity and the magnitude of the immune response.
- Klíčová slova
- T cell, T-cell diversity, antigen-inexperienced memory-like CD8 T cells, interferon response, self-reactivity,
- MeSH
- autoantigeny MeSH
- buněčné klony MeSH
- CD8-pozitivní T-lymfocyty * MeSH
- interferon typ I * MeSH
- myši MeSH
- thymus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- autoantigeny MeSH
- interferon typ I * MeSH
Cancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion-deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers (>100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10-100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in 'immunologically cold' tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy.
- MeSH
- analýza přežití MeSH
- antigeny CD274 antagonisté a inhibitory MeSH
- dítě MeSH
- dospělí MeSH
- inhibitory kontrolních bodů farmakologie terapeutické užití MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádorové biomarkery MeSH
- nádorové mikroprostředí MeSH
- nádory farmakoterapie MeSH
- oprava DNA genetika MeSH
- prospektivní studie MeSH
- replikace DNA genetika MeSH
- retrospektivní studie MeSH
- zárodečné mutace * MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD274 MeSH
- CD274 protein, human MeSH Prohlížeč
- inhibitory kontrolních bodů MeSH
- nádorové biomarkery MeSH