Most cited article - PubMed ID 26013810
PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank
Channels, tunnels, and pores serve as pathways for the transport of molecules and ions through protein structures, thus participating to their functions. MOLEonline ( https://mole.upol.cz ) is an interactive web-based tool with enhanced capabilities for detecting and characterizing channels, tunnels, and pores within protein structures. MOLEonline has two distinct calculation modes for analysis of channel and tunnels or transmembrane pores. This application gives researchers rich analytical insights into channel detection, structural characterization, and physicochemical properties. ChannelsDB 2.0 ( https://channelsdb2.biodata.ceitec.cz/ ) is a comprehensive database that offers information on the location, geometry, and physicochemical characteristics of tunnels and pores within macromolecular structures deposited in Protein Data Bank and AlphaFill databases. These tunnels are sourced from manual deposition from literature and automatic detection using software tools MOLE and CAVER. MOLEonline and ChannelsDB visualization is powered by the LiteMol Viewer and Mol* viewer, ensuring a user-friendly workspace. This chapter provides an overview of user applications and usage.
- Keywords
- Biomacromolecule, PDB, Physicochemical properties, Pore, Protein, Residues, Tunnel, Visualization, Voronoi, mmCIF, Channel,
- MeSH
- Databases, Protein * MeSH
- Web Browser MeSH
- Ion Channels metabolism chemistry MeSH
- Protein Conformation MeSH
- Models, Molecular MeSH
- Proteins chemistry metabolism MeSH
- Software * MeSH
- User-Computer Interface MeSH
- Computational Biology methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ion Channels MeSH
- Proteins MeSH
Large biomolecular structures are being determined experimentally on a daily basis using established techniques such as crystallography and electron microscopy. In addition, emerging integrative or hybrid methods (I/HM) are producing structural models of huge macromolecular machines and assemblies, sometimes containing 100s of millions of non-hydrogen atoms. The performance requirements for visualization and analysis tools delivering these data are increasing rapidly. Significant progress in developing online, web-native three-dimensional (3D) visualization tools was previously accomplished with the introduction of the LiteMol suite and NGL Viewers. Thereafter, Mol* development was jointly initiated by PDBe and RCSB PDB to combine and build on the strengths of LiteMol (developed by PDBe) and NGL (developed by RCSB PDB). The web-native Mol* Viewer enables 3D visualization and streaming of macromolecular coordinate and experimental data, together with capabilities for displaying structure quality, functional, or biological context annotations. High-performance graphics and data management allows users to simultaneously visualise up to hundreds of (superimposed) protein structures, stream molecular dynamics simulation trajectories, render cell-level models, or display huge I/HM structures. It is the primary 3D structure viewer used by PDBe and RCSB PDB. It can be easily integrated into third-party services. Mol* Viewer is open source and freely available at https://molstar.org/.
- MeSH
- Internet MeSH
- Protein Conformation MeSH
- Macromolecular Substances chemistry MeSH
- Models, Molecular * MeSH
- Software * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Macromolecular Substances MeSH
Biomacromolecular structural data make up a vital and crucial scientific resource that has grown not only in terms of its amount but also in its size and complexity. Furthermore, these data are accompanied by large and increasing amounts of experimental data. Additionally, the macromolecular data are enriched with value-added annotations describing their biological, physicochemical and structural properties. Today, the scientific community requires fast and fully interactive web visualization to exploit this complex structural information. This article provides a survey of the available cutting-edge web services that address this challenge. Specifically, it focuses on data-delivery problems, discusses the visualization of a single structure, including experimental data and annotations, and concludes with a focus on the results of molecular-dynamics simulations and the visualization of structural ensembles.
- Keywords
- browser-based, data delivery, macromolecules, visualization, web-based,
- MeSH
- Internet * MeSH
- Macromolecular Substances chemistry MeSH
- Computer Graphics * MeSH
- Software * MeSH
- User-Computer Interface * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Macromolecular Substances MeSH
MOLEonline is an interactive, web-based application for the detection and characterization of channels (pores and tunnels) within biomacromolecular structures. The updated version of MOLEonline overcomes limitations of the previous version by incorporating the recently developed LiteMol Viewer visualization engine and providing a simple, fully interactive user experience. The application enables two modes of calculation: one is dedicated to the analysis of channels while the other was specifically designed for transmembrane pores. As the application can use both PDB and mmCIF formats, it can be leveraged to analyze a wide spectrum of biomacromolecular structures, e.g. stemming from NMR, X-ray and cryo-EM techniques. The tool is interconnected with other bioinformatics tools (e.g., PDBe, CSA, ChannelsDB, OPM, UniProt) to help both setup and the analysis of acquired results. MOLEonline provides unprecedented analytics for the detection and structural characterization of channels, as well as information about their numerous physicochemical features. Here we present the application of MOLEonline for structural analyses of α-hemolysin and transient receptor potential mucolipin 1 (TRMP1) pores. The MOLEonline application is freely available via the Internet at https://mole.upol.cz.
Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives. An appropriate model system to study such an interaction is the AAL lectin family where the stacking interactions play a crucial role and are thought to be a driving force for carbohydrate binding. In this study we present data showing a novel finding in the stacking interaction of the AAL Trp side chain with the carbohydrate. High resolution X-ray structure of the AAL lectin from Aleuria aurantia with α-methyl-l-fucoside ligand shows two possible Trp side chain conformations with the same occupation in electron density. The in silico data shows that the conformation of the Trp side chain does not influence the interaction energy despite the fact that each conformation creates interactions with different carbohydrate CH groups. Moreover, the PDB data search shows that the conformations are almost equally distributed across all Trp-carbohydrate complexes, which would suggest no substantial preference for one conformation over another.
- MeSH
- Databases, Protein MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray MeSH
- Lectins chemistry metabolism MeSH
- Carbohydrate Metabolism * MeSH
- Tryptophan chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- lectin, Aleuria aurantia MeSH Browser
- Lectins MeSH
- Tryptophan MeSH
- MeSH
- Datasets as Topic * MeSH
- Cryoelectron Microscopy MeSH
- Internet MeSH
- Web Browser * MeSH
- Humans MeSH
- Ligands MeSH
- Macromolecular Substances chemistry MeSH
- Models, Molecular * MeSH
- User-Computer Interface MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Letter MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ligands MeSH
- Macromolecular Substances MeSH
The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.
- Keywords
- ADME, drug delivery systems, biological chemistry, biomaterials, chemical biology, drug design, nanoparticles, natural compounds, proteins and nucleic acids, synthesis, targeting,
- MeSH
- Epigenesis, Genetic MeSH
- Chemistry, Pharmaceutical methods MeSH
- Drug Delivery Systems MeSH
- Proteins chemistry MeSH
- Drug Design MeSH
- Systems Biology MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Congress MeSH
- Names of Substances
- Proteins MeSH