Nejvíce citovaný článek - PubMed ID 26025526
The genomics of plant sex chromosomes
Sex chromosomes have evolved in many plant species with separate sexes. Current plant research is shifting from examining the structure of sex chromosomes to exploring their functional aspects. New studies are progressively unveiling the specific genetic and epigenetic mechanisms responsible for shaping distinct sexes in plants. While the fundamental methods of molecular biology and genomics are generally employed for the analysis of sex chromosomes, it is often necessary to modify classical procedures not only to simplify and expedite analyses but sometimes to make them possible at all. In this review, we demonstrate how, at the level of structural and functional genetics, cytogenetics, and bioinformatics, it is essential to adapt established procedures for sex chromosome analysis.
- Klíčová slova
- Bioinformatics, chromosome dissection, cytogenetics, dioecious plants, epigenetics, functional genetics, sex chromosomes, tandem repeats, transposable elements,
- MeSH
- chromozomy rostlin * genetika MeSH
- pohlavní chromozomy * genetika MeSH
- rostliny genetika MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plant speciation results from intricate processes such as polyploidization, reproductive strategy shifts and adaptation. These evolutionary processes often co-occur, blurring their respective contributions and interactions in the speciation continuum. Here, relying on a large-scale study, we tested whether gynodioecy triggers the divergent evolution of flower morphology and genome between sexes, and contributes to the establishment of polyploids and colonization of ecological niches in Stellaria graminea. We found that gynodioecy in S. graminea leads to flower morphology divergence between females and hermaphrodites, likely due to sexual selection. Contrary to our expectations, gynodioecy occurs evenly in diploids and tetraploids, suggesting that this reproductive strategy was not involved in the establishment of polyploids. Both diploid and tetraploid females have a larger genome size than hermaphrodites, suggesting the presence of sex chromosomes. Finally, ecology differs between cytotypes and to a lesser extent between sexes, suggesting that the link between environment and presence of females is indirect and likely explained by other aspects of the species' life history. Our study shows that gynodioecy leads to the consistent evolution of sexual traits across a wide range of populations, cytotypes and environments within a given species, and this likely contributes to the phenotypic and genetic distinctiveness of the species from its sister clades.
- Klíčová slova
- Carpathians, Stellaria graminea, ecological drivers, gynodioecy, sexual polymorphism, whole genome duplication,
- Publikační typ
- časopisecké články MeSH
The genus Silene includes a plethora of dioecious and gynodioecious species. Two species, Silene latifolia (white campion) and Silene dioica (red campion), are dioecious plants, having heteromorphic sex chromosomes with an XX/XY sex determination system. The X and Y chromosomes differ mainly in size, DNA content and posttranslational histone modifications. Although it is generally assumed that the sex chromosomes evolved from a single pair of autosomes, it is difficult to distinguish the ancestral pair of chromosomes in related gynodioecious and hermaphroditic plants. We designed an oligo painting probe enriched for X-linked scaffolds from currently available genomic data and used this probe on metaphase chromosomes of S. latifolia (2n = 24, XY), S. dioica (2n = 24, XY), and two gynodioecious species, S. vulgaris (2n = 24) and S. maritima (2n = 24). The X chromosome-specific oligo probe produces a signal specifically on the X and Y chromosomes in S. latifolia and S. dioica, mainly in the subtelomeric regions. Surprisingly, in S. vulgaris and S. maritima, the probe hybridized to three pairs of autosomes labeling their p-arms. This distribution suggests that sex chromosome evolution was accompanied by extensive chromosomal rearrangements in studied dioecious plants.
- Klíčová slova
- Silene, Y chromosome, chromosome painting, double-translocation, pseudo-autosomal region,
- Publikační typ
- časopisecké články MeSH
Amplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly-free approach that utilizes ultra-long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities. Using the satellite DNA-rich legume plant Lathyrus sativus as a model, we demonstrated this approach by analyzing 11 major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73× genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR-retrotransposons that occasionally expanded in length. While the corresponding LTR-retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of the L. sativus chromosomes, which suggests that these genome regions are favourable for satellite DNA accumulation.
- Klíčová slova
- Lathyrus sativus, centromeres, fluorescence in situ hybridization (FISH), heterochromatin, long-range organization, nanopore sequencing, satellite DNA, sequence evolution, technical advance,
- MeSH
- centromera MeSH
- chromozomy rostlin MeSH
- DNA rostlinná genetika MeSH
- frekvence genu * MeSH
- genom rostlinný MeSH
- heterochromatin MeSH
- Lathyrus genetika MeSH
- molekulární evoluce MeSH
- nanopóry * MeSH
- retroelementy * MeSH
- satelitní DNA * MeSH
- tandemové repetitivní sekvence * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- heterochromatin MeSH
- retroelementy * MeSH
- satelitní DNA * MeSH
In contrast to animals, separate sexes and sex chromosomes in plants are very rare. Although the evolution of sex chromosomes has been the subject of numerous studies, the impact of repetitive sequences on sex chromosome architecture is not fully understood. New genomic approaches shed light on the role of satellites and transposable elements in the process of Y chromosome evolution. We discuss the impact of repetitive sequences on the structure and dynamics of sex chromosomes with specific focus on Rumex acetosa and Silene latifolia. Recent papers showed that both the expansion and shrinkage of the Y chromosome is influenced by sex-specific regulation of repetitive DNA spread. We present a view that the dynamics of Y chromosome formation is an interplay of genetic and epigenetic processes.
- Klíčová slova
- Y chromosome, satellites, sex chromosomes, transposable elements,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes.
- Klíčová slova
- chromosomal localization, genome composition, repetitive DNA, sex chromosomes,
- MeSH
- chromozomy rostlin * MeSH
- DNA rostlinná genetika MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- Hippophae genetika MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy * MeSH
- satelitní DNA * MeSH
- sekvenční analýza DNA metody MeSH
- transpozibilní elementy DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- satelitní DNA * MeSH
- transpozibilní elementy DNA * MeSH
Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes.
- Klíčová slova
- microsatellites, recombination, repetitive sequences, sex chromosomes, tandem repeats (satellites), transposable elements,
- MeSH
- chromozomy rostlin * MeSH
- DNA rostlinná * MeSH
- molekulární evoluce * MeSH
- pohlavní chromozomy genetika MeSH
- regulace genové exprese u rostlin MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- rostliny genetika MeSH
- transpozibilní elementy DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná * MeSH
- transpozibilní elementy DNA MeSH