Nejvíce citovaný článek - PubMed ID 26697725
Transition-Metal-Free CO-Releasing BODIPY Derivatives Activatable by Visible to NIR Light as Promising Bioactive Molecules
Cardiovascular function depends on an adequate vascular tone facilitating appropriate blood flow to individual tissues according to their needs. The tone results from the interplay between vasodilatation and vasoconstriction. Its rapid and efficient regulation is secured by many interconnected physiological mechanisms, both at the level of the vascular smooth muscle and the endothelium. The purpose of this review is to provide an update of the current knowledge on the mechanisms of physiological vasodilatation. First, two principal intracellular signaling pathways linked to the activation of protein kinases PKA and PKG are introduced. Subsequently, the role of endothelium-derived relaxing factors together with the endothelium-dependent hyperpolarization is discussed. The roles of ion channels and gap junctions in the communication between endothelium and vascular smooth muscle cells are particularly discussed. Finally, principal vasodilatory stimuli (mechanical, thermal, chemical) and their mechanisms of action are briefly introduced.
- Klíčová slova
- EDRF, NO, PKA, PKG, Vasodilatation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Carbon monoxide (CO) is notorious for its toxic effects but is also recognized as a gasotransmitter with considerable therapeutic potential. Due to the inherent challenges in its delivery, the utilization of organic CO photoreleasing molecules (photoCORMs) represents an interesting alternative to CO administration characterized by high spatial and temporal precision of release. This paper focused on the design, synthesis, and photophysical and photochemical studies of 20 3-hydroxyflavone (flavonol) and 3-hydroxyflavothione derivatives as photoCORMs. Newly synthesized compounds bearing various electron-donating and electron-withdrawing groups show bathochromically shifted absorption maxima and considerably enhanced CO release yields compared to the parent unsubstituted flavonol, exceeding 0.8 equiv of released CO in derivatives exhibiting excited states with a charge-transfer character. Until now, such outcomes have been limited to flavonol derivatives possessing a π-extended aromatic system. In addition, thione analogs of flavonols, 3-hydroxyflavothiones, show substantial bathochromic shifts of their absorption maxima and enhanced photosensitivity but provide lower yields of CO formation. Our study elucidates in detail the mechanism of CO photorelease from flavonols and flavothiones, utilizing steady-state and time-resolved spectroscopies and photoproduct analyses, with a particular emphasis on unraveling the structure-photoreactivity relationship and understanding competing side processes.
- Publikační typ
- časopisecké články MeSH
We report on porphyrin-flavonol hybrids consisting of a porphyrin antenna and four covalently bound 3-hydroxyflavone (flavonol) groups, which act as highly efficient photoactivatable carbon monoxide (CO)-releasing molecules (photoCORMs). These bichromophoric systems enable activation of the UV-absorbing flavonol chromophore by visible light up to 650 nm and offer precise spatial and temporal control of CO administration. The physicochemical properties of the porphyrin antenna system can also be tuned by inserting a metal cation. Our computational study revealed that the process occurs via endergonic triplet-triplet energy transfer from porphyrin to flavonol and may become feasible thanks to flavonol energy stabilization upon intramolecular proton transfer. This mechanism was also indirectly supported by steady-state and transient absorption spectroscopy techniques. Additionally, the porphyrin-flavonol hybrids were found to be biologically benign. With four flavonol CO donors attached to a single porphyrin chromophore, high CO release yields, excellent uncaging cross sections, low toxicity, and CO therapeutic properties, these photoCORMs offer exceptional potential for their further development and future biological and medical applications.
- Publikační typ
- časopisecké články MeSH
Irradiation of coumarin-3-carboxylic acid in acetonitrile and methanol solutions at 355 nm results in complex multistep photochemical transformations, strongly dependent on the solvent properties and oxygen content. A number of reaction intermediates, which themselves undergo further (photo)chemical reactions, were identified by steady-state and transient absorption spectroscopy, mass spectrometry, and NMR and product analyses. The triplet excited compound in acetonitrile undergoes decarboxylation to give a 3-coumarinyl radical that traps molecular oxygen to form 3-hydroxycoumarin as the major but chemically reactive intermediate. This compound is oxygenated by singlet oxygen, produced by coumarin-3-carboxylic acid sensitization, followed by a pyrone ring-opening reaction to give an oxalic acid derivative. The subsequent steps lead to the production of salicylaldehyde, carbon monoxide, and carbon dioxide as the final products. When 3-coumarinyl radical is not trapped by oxygen in degassed acetonitrile, it abstracts hydrogen from the solvent and undergoes triplet-sensitized [2 + 2] cycloaddition. The reaction of 3-coumarinyl radical with oxygen is largely suppressed in aerated methanol as a better H-atom donor, and coumarin is obtained as the primary product in good yields. Because coumarin derivatives are used in many photophysical and photochemical applications, this work provides detailed and sometimes surprising insights into their complex phototransformations.
- Klíčová slova
- Coumarin, Photochemistry, Photooxidation, Singlet oxygen,
- MeSH
- acetonitrily chemie MeSH
- kumariny * MeSH
- kyslík MeSH
- methanol * MeSH
- rozpouštědla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetonitrily MeSH
- coumarin-3-carboxylic acid MeSH Prohlížeč
- kumariny * MeSH
- kyslík MeSH
- methanol * MeSH
- rozpouštědla MeSH
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Carbon monoxide (CO) is an endogenous signaling molecule that controls a number of physiological processes. To circumvent the inherent toxicity of CO, light-activated CO-releasing molecules (photoCORMs) have emerged as an alternative for its administration. However, their wider application requires photoactivation using biologically benign visible and near-infrared (NIR) light. In this work, a strategy to access such photoCORMs by fusing two CO-releasing flavonol moieties with a NIR-absorbing cyanine dye is presented. These hybrids liberate two molecules of CO in high chemical yields upon activation with NIR light up to 820 nm and exhibit excellent uncaging cross-sections, which surpass the state-of-the-art by two orders of magnitude. Furthermore, the biocompatibility and applicability of the system in vitro and in vivo are demonstrated, and a mechanism of CO release is proposed. It is hoped that this strategy will stimulate the discovery of new classes of photoCORMs and accelerate the translation of CO-based phototherapy into practice.
- Klíčová slova
- CO release, cyanine, near-infrared light, photoCORM, photorelease,
- Publikační typ
- časopisecké články MeSH
Two photoactivatable dicarbonyl ruthenium(II) complexes based on an amide-functionalised bipyridine scaffold (4-position) equipped with an alkyne functionality or a green-fluorescent BODIPY (boron-dipyrromethene) dye have been prepared and used to investigate their light-induced decarbonylation. UV/Vis, FTIR and 13 C NMR spectroscopies as well as gas chromatography and multivariate curve resolution alternating least-squares analysis (MCR-ALS) were used to elucidate the mechanism of the decarbonylation process. Release of the first CO molecule occurs very quickly, while release of the second CO molecule proceeds more slowly. In vitro studies using two cell lines A431 (human squamous carcinoma) and HEK293 (human embryonic kidney cells) have been carried out in order to characterise the anti-proliferative and anti-apoptotic activities. The BODIPY-labelled compound allows for monitoring the cellular uptake, showing fast internalisation kinetics and accumulation at the endoplasmic reticulum and mitochondria.
- Klíčová slova
- anti-apoptotic activity, anti-proliferative, cellular localisation, photoCORM, ruthenium(II),
- MeSH
- 2,2'-dipyridyl chemie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oxid uhelnatý chemie MeSH
- prekurzory léčiv chemie účinky záření MeSH
- ruthenium chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2,2'-dipyridyl MeSH
- oxid uhelnatý MeSH
- prekurzory léčiv MeSH
- ruthenium MeSH