Nejvíce citovaný článek - PubMed ID 26807317
The added value of circulating tumor cells examination in ovarian cancer staging
Despite the advancements made in the diagnosis and treatment of cancer, the stages associated with metastasis remain largely incurable and represent the primary cause of cancer-related deaths. The dissemination of cancer is facilitated by circulating tumor cells (CTCs), which originate from the primary tumor or metastatic sites and enter the bloodstream, subsequently spreading to distant parts of the body. CTCs have garnered significant attention in research due to their accessibility in peripheral blood, despite their low abundance. They are being extensively studied to gain a deeper understanding of the mechanisms underlying cancer dissemination and to identify effective therapeutic strategies for advanced stages of the disease. Therefore, substantial efforts have been directed towards establishing and characterizing relevant experimental models derived from CTCs, aiming to provide relevant tools for research. In this review, we provide an overview of recent progress in the establishment of preclinical CTC-derived models, such as CTC-derived xenografts (CDX) and cell cultures, which show promise for the study of CTCs. We discuss the advantages and limitations of these models and conclude by summarizing the potential future use of CTCs and CTC-derived models in cancer treatment decisions and their utility as precision medicine tools.
BACKGROUND: Dendritic cell (DC) therapy counts to the promising strategies how to weaken and eradicate cancer disease. We aimed to develop a good manufacturing practice (GMP) protocol for monocyte-derived DC (Mo-DC) maturation using circulating tumor cells lysates with subsequent experimental T-cell priming in vitro. METHODS: DC differentiation was induced from a population of immunomagnetically enriched CD14 + monocytes out of the leukapheresis samples (n = 6). The separation was provided automatically, in a closed bag system, using CliniMACS Prodigy® separation protocols (Miltenyi Biotec). For differentiation and maturation of CD14 + cells, DendriMACs® growing medium with supplements (GM-CSF, IL-4, IL-6, IL-1B, TNFa, PGE) was used. Immature Mo-DCs were loaded with autologous circulating tumor cell (CTCs) lysates. Autologous CTCs were sorted out by size-based filtration (MetaCell®) of the leukapheresis CD14-negative fraction. A mixture of mature Mo-DCs and autologous non-target blood cells (NTBCs) was co-cultured and the activation effect of mature Mo-DCs on T-cell activation was monitored by means of multimarker gene expression profiling. RESULTS: New protocols for mMo-DC production using automatization and CTC lysates were introduced including a feasible in vitro assay for mMo-DC efficacy evaluation. Gene expression analysis revealed elevation for following genes in NTBC (T cells) subset primed by mMo-DCs: CD8A, CD4, MKI67, MIF, TNFA, CD86, and CD80 (p ≤ 0.01). CONCLUSION: Summarizing the presented data, we might conclude mMo-DCs were generated using CliniMACS Prodigy® machine and CTC lysates in a homogenous manner showing a potential to generate NTBC activation in co-cultures. Identification of the activation signals in T-cell population by simple multimarker-qPCRs could fasten the process of effective mMo-DC production.
- Klíčová slova
- Circulating tumor cells, Dendritic cells, Immunotherapy, MetaCell, Personalized medicine, T cells,
- MeSH
- dendritické buňky * metabolismus MeSH
- faktor stimulující granulocyto-makrofágové kolonie farmakologie MeSH
- interleukin-4 farmakologie MeSH
- interleukin-6 farmakologie MeSH
- lidé MeSH
- monocyty * metabolismus MeSH
- nádorové cirkulující buňky * metabolismus MeSH
- prostaglandiny E farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor stimulující granulocyto-makrofágové kolonie MeSH
- interleukin-4 MeSH
- interleukin-6 MeSH
- prostaglandiny E MeSH
The European Society of Gynaecological Oncology (ESGO), the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG), the International Ovarian Tumour Analysis (IOTA) group, and the European Society for Gynaecological Endoscopy (ESGE) jointly developed clinically relevant and evidence-based statements on the pre-operative diagnosis of ovarian tumors, including imaging techniques, biomarkers, and prediction models. ESGO/ISUOG/IOTA/ESGE nominated a multidisciplinary international group, including expert practising clinicians and researchers who have demonstrated leadership and expertise in the pre-operative diagnosis of ovarian tumors and management of patients with ovarian cancer (19 experts across Europe). A patient representative was also included in the group. To ensure that the statements were evidence-based, the current literature was reviewed and critically appraised. Preliminary statements were drafted based on the review of the relevant literature. During a conference call, the whole group discussed each preliminary statement and a first round of voting was carried out. Statements were removed when a consensus among group members was not obtained. The voters had the opportunity to provide comments/suggestions with their votes. The statements were then revised accordingly. Another round of voting was carried out according to the same rules to allow the whole group to evaluate the revised version of the statements. The group achieved consensus on 18 statements. This Consensus Statement presents these ESGO/ISUOG/IOTA/ESGE statements on the pre-operative diagnosis of ovarian tumors and the assessment of carcinomatosis, together with a summary of the evidence supporting each statement.
- Klíčová slova
- ovarian neoplasms, ovary,
- MeSH
- konsensus MeSH
- lidé MeSH
- nádory vaječníků diagnóza MeSH
- předoperační období MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
Treatment of aggressive glioblastoma multiforme (GBM) must be based on very precise histological and molecular diagnostic of GBM type. According to the WHO guidelines, only tissue biopsy is a relevant source of cellular material evaluated in the diagnostic process to specify the tumor features. Nevertheless, obtaining a GBM biopsy is complicated and relies mostly on resection surgery. Evaluating circulating free DNA and/or circulating tumor cells (CTCs) in the clinic, using a liquid biopsy could represent a non-invasive cancer care optimization. In the present study, the peripheral blood of patients undergoing GBM resection (n = 18) was collected and examined for CTCs. The feasibility of GBM molecular diagnostics from a simple non-invasive peripheral blood withdrawal was evaluated. The size-based enriched CTCs were analyzed using cytomorphology and their origin confirmed based on mutational analysis. In addition, shared DNA mutations in CTCs and in primary tumor tissue were searched. For the identification of CTCs, next generation sequencing (NGS) was used. The GeneReader™ sequencing platform enables targeted sequencing of a 12-gene panel and direct evaluation of detected gene variations using QIAGEN Clinical Insight Analyze (QCI-A) software with a special algorithm for liquid biopsy sequencing analysis. Herein, we present a standard operating procedure for CTC enrichment in GBM patients, CTC in vitro culture, CTC cytomorphological evaluation, and NGS analysis of CTCs using the QIAGEN Actionable Insights Tumor (ATP) Panel. CTCs were present in all tested patients (18/18). The NGS data generated for formalin-fixed paraffin-embedded (FFPE) primary tumor tissues and CTCs reached significantly high-quality parameters. The comparisons between different sample types (CTCs vs. primary tumors) and sampling area (different primary tumor regions) showed a significant level of concordance, indicating CTC testing could be used for patient monitoring and recurrence awareness. Notably, more mutations were detected when analyzing CTC samples compared with the paired primary tumors (n = 3). The results confirm the feasibility of using CTCs as a source of tumor DNA in a diagnostic process, especially when evaluating the molecular characteristics of GBMs. A major advantage of the presented NGS approach for detecting CTCs is the simultaneous identification of several markers relevant for GBM diagnostics, allowing molecular diagnostics on cytological specimens and potential administration of innovative targeted therapies.
- Klíčová slova
- CTCs, culturing, gene expression, glioblastoma, in vitro, liquid biopsy, metacell, sequencing,
- Publikační typ
- časopisecké články MeSH
Colorectal carcinoma (CRC) is characterized by wide intratumor heterogeneity with general genomic instability and there is a need for improved diagnostic, prognostic, and therapeutic tools. The liquid biopsy provides a noninvasive route of sample collection for analysis of circulating tumor cells (CTCs) and genomic material, including cell-free DNA (cfDNA), as a complementary biopsy to the solid tumor tissue. The solid biopsy is critical for molecular characterization and diagnosis at the time of collection. The liquid biopsy has the advantage of longitudinal molecular characterization of the disease, which is crucial for precision medicine and patient-oriented treatment. In this review, we provide an overview of CRC and the different methodologies for the detection of CTCs and cfDNA, followed by a discussion on the potential clinical utility of the liquid biopsy in CRC patient care, and lastly, current challenges in the field.
- Klíčová slova
- CRC, CTC, cfDNA, circulating free DNA, circulating tumor DNA, circulating tumor cell, colorectal carcinoma, ctDNA, liquid biopsy, precision medicine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The presence of circulating tumor cells (CTCs) in patients with solid tumors is associated with poor prognosis. However, there are limited data concerning the detection of CTCs in renal cell cancer (RCC). The aim of this study is to evaluate the presence of CTCs in peripheral blood of patients with RCC undergoing surgery (n = 186). CTCs were tested before and after surgery as well as during the follow-up period afterwards. In total 495 CTC testing in duplicates were provided. To enrich CTCs, a size-based separation protocol and tube MetaCell® was used. CTCs presence was evaluated by single cell cytomorphology based on vital fluorescence microscopy. Additionally, to standardly applied fluorescence stains, CTCs viability was controlled by mitochondrial activity. CTCs were detected independently on the sampling order in up to 86.7% of the tested blood samples in patients undergoing RCC surgery. There is higher probability of CTC detection with growing tumor size, especially in clear cell renal cell cancer (ccRCC) cases. Similarly, the tumor size corresponds with metastasis presence and lymph node positivity and CTC detection. This paper describes for the first-time successful analysis of viable CTCs and their mitochondria as a part of the functional characterization of CTCs in RCC.
- Klíčová slova
- CTCs, MetaCell, PDL-1, culturing, gene expression, immunotherapy, in vitro, renal cancer,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: This study analyzes peripheral blood samples from breast cancer (BC) patients. CTCs from peripheral blood were enriched by size-based separation and were then cultivated in vitro. The primary aim of this study was to demonstrate the antigen independent CTC separation method with high CTC recovery. Subsequently, CTCs enriched several times during the treatment were characterized molecularly. METHODS: Patients with different stages of BC (N = 167) were included into the study. All patients were candidates for surgery, surgical diagnostics, or were undergoing chemotherapy. In parallel, 20 patients were monitored regularly and in addition to CTC presence, also CTC character was examined by qPCR, with special focus on HER2 and ESR status. RESULTS: CTC positivity in the cohort was 76%. There was no significant difference between the tested groups, but the highest CTC occurrence was identified in the group undergoing surgery and similarly in the group before the start of neoadjuvant treatment. On the other hand, the lowest CTC frequencies were observed in the menopausal patient group (56%), ESR+ patient group (60%), and DCIS group (44.4%). It is worth noting that after completion of neoadjuvant therapy (NACT) CTCs were present in 77.7% of cases. On the other hand, patients under hormonal treatment were CTC positive only in 52% of cases. DISCUSSIONS: Interestingly, HER2 and ESR status of CTCs differs from the status of primary tumor. In 50% of patients HER2 status on CTCs changed not only from HER2+ to HER2-, but also from HER2- to HER2+ (33%). ESR status in CTCs changed only in one direction from ESR+ to ESR-. CONCLUSIONS: Data obtained from the present study suggest that BC is a heterogeneous disease but CTCs may be detected independently of the disease characteristics in 76% of patients at any time point during the course of the disease. This relatively high CTC occurrence in BC should be considered when planning the long-term patient monitoring.
- Klíčová slova
- Breast cancer, CTCs, Circulating tumor cells, Cultivation, Gene expression, In vitro, MetaCell,
- MeSH
- alfa receptor estrogenů genetika MeSH
- dospělí MeSH
- genetická heterogenita * MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery genetika MeSH
- nádorové cirkulující buňky patologie MeSH
- nádory prsu krev genetika patologie MeSH
- receptor erbB-2 genetika MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- staging nádorů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alfa receptor estrogenů MeSH
- ERBB2 protein, human MeSH Prohlížeč
- ESR1 protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- receptor erbB-2 MeSH
The main focus of the study was to detect circulating tumor cells (CTCs) in ovarian cancer (OC) patients using a new methodological approach (MetaCell(TM)) which is based on size-dependent separation of CTCs and subsequent cytomorphological evaluation. Cytomorphological evaluation using vital fluorescence microscopy approach enables to use the captured cells for further RNA/DNA analysis. The cytomorphological analysis is then completed by gene expression analysis (GEA). GEA showed that relative expression of EPCAM is elevated in CTC-enriched fractions in comparison to the whole peripheral blood sample and that the expression grows with in vitro cultivation time. Comparison of the relative gene expression level in the group of peripheral blood samples and CTC-fraction samples confirmed a statistically significant difference for the following genes (p < 0.02): KRT7, WT1, EPCAM, MUC16, MUC1, KRT18 and KRT19. Thus, we suggest that the combination of the above listed genes could confirm CTCs presence in OC patients with higher specificity than when GEA tests are performed for one marker only. The GEA revealed two separate clusters identifying patients with or without CTCs.
- Klíčová slova
- CTCs, MetaCell, circulating tumor cells, cultivation, gene expression, in vitro, ovarian cancer,
- Publikační typ
- časopisecké články MeSH