Nejvíce citovaný článek - PubMed ID 27065883
Flavonolignans As a Novel Class of Sodium Pump Inhibitors
Members of the Viola genus play important roles in traditional Asian herbal medicine. This study investigates the ability of Viola odorata L. extracts to inhibit Na+,K+-ATPase, an essential animal enzyme responsible for membrane potential maintenance. The root extract of V. odorata strongly inhibited Na+,K+-ATPase, while leaf and seeds extracts were basically inactive. A UHPLC-QTOF-MS/MS metabolomic approach was used to identify the chemical principle of the root extract's activity, resulting in the detection of 35,292 features. Candidate active compounds were selected by correlating feature area with inhibitory activity in 14 isolated fractions. This yielded a set of 15 candidate compounds, of which 14 were preliminarily identified as procyanidins. Commercially available procyanidins (B1, B2, B3 and C1) were therefore purchased and their ability to inhibit Na+,K+-ATPase was investigated. Dimeric procyanidins B1, B2 and B3 were found to be inactive, but the trimeric procyanidin C1 strongly inhibited Na+,K+-ATPase with an IC50 of 4.5 µM. This newly discovered inhibitor was docked into crystal structures mimicking the Na3E1∼P·ADP and K2E2·Pi states to identify potential interaction sites within Na+,K+-ATPase. Possible binding mechanisms and the principle responsible for the observed root extract activity are discussed.
- MeSH
- flavonoidy MeSH
- ionty metabolismus MeSH
- proantokyanidiny * metabolismus farmakologie MeSH
- rostlinné extrakty farmakologie MeSH
- sodík metabolismus MeSH
- sodíko-draslíková ATPasa metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Viola * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flavonoidy MeSH
- ionty MeSH
- proantokyanidiny * MeSH
- procyanidin trimer C1 MeSH Prohlížeč
- rostlinné extrakty MeSH
- sodík MeSH
- sodíko-draslíková ATPasa MeSH
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
- Klíčová slova
- Silybum marianum, chirality, dehydroflavonolignan, diastereomer, flavonoid, flavonolignan, isosilybin, milk thistle, silibinin, silybin, silychristin, silydianin, silymarin,
- MeSH
- antiinfekční látky chemie farmakologie MeSH
- antioxidancia chemie farmakologie MeSH
- antitumorózní látky fytogenní chemie farmakologie MeSH
- lidé MeSH
- silibinin chemie farmakologie MeSH
- stereoizomerie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antiinfekční látky MeSH
- antioxidancia MeSH
- antitumorózní látky fytogenní MeSH
- silibinin MeSH
Silychristin A is the second most abundant compound of silymarin. Silymarin complex was previously described as an antioxidant with multidrug resistance modulation activity. Here, the results of a classical biochemical antioxidant assay (ORAC) were compared with a cellular assay evaluating the antioxidant capacity of pure silychristin A and its derivatives (anhydrosilychristin, isosilychristin and 2,3-dehydrosilychristin A). All the tested compounds acted as antioxidants within the cells, but 2,3-dehydro- and anhydro derivatives were almost twice as potent as the other tested compounds. Similar results were obtained in LPS-stimulated macrophages, where 2,3-dehydro- and anhydrosilychristin inhibited NO production nearly twice as efficiently as silychristin A. The inhibition of P-glycoprotein (P-gp) was determined in vitro, and the respective sensitization of doxorubicin-resistant ovarian carcinoma overproducing P-gp was detected. Despite the fact that the inhibition of P-gp was demonstrated in a concentration-dependent manner for each tested compound, the sensitization of the resistant cell line was observed predominantly for silychristin A and 2,3-dehydrosilychristin A. However, anhydrosilychristin and isosilychristin affected the expression of both the P-gp (ABCB1) and ABCG2 genes. This is the first report showing that silychristin A and its 2,3-dehydro-derivative modulate multidrug resistance by the direct inhibition of P-gp, in contrast to anhydrosilychristin and isosilychristin modulating multidrug resistance by downregulating the expression of the dominant transmembrane efflux pumps.
- Klíčová slova
- ABC superfamily, Adriamycin, BCRP, P-glycoprotein, expression profile, immunomodulation, silychristin, silymarin,
- Publikační typ
- časopisecké články MeSH
Cisplatin is the most widely used chemotherapeutic drug for the treatment of various types of cancer; however, its administration brings also numerous side effects. It was demonstrated that cisplatin can inhibit the Na+/K+-ATPase (NKA), which can explain a large part of the adverse effects. In this study, we have identified five cysteinyl residues (C452, C456, C457, C577, and C656) as the cisplatin binding sites on the cytoplasmic loop connecting transmembrane helices 4 and 5 (C45), using site-directed mutagenesis and mass spectrometry experiments. The identified residues are known to be susceptible to glutathionylation indicating their involvement in a common regulatory mechanism.
- Klíčová slova
- C45 loop, Na+/K+-ATPase, binding site, cisplatin, cysteine mutants, sodium pump,
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- cisplatina chemie farmakologie MeSH
- cystein antagonisté a inhibitory metabolismus MeSH
- cytoplazma účinky léků metabolismus MeSH
- hmotnostní spektrometrie MeSH
- mutageneze cílená MeSH
- myši MeSH
- simulace molekulární dynamiky MeSH
- sodíko-draslíková ATPasa antagonisté a inhibitory genetika metabolismus MeSH
- vazebná místa účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antitumorózní látky MeSH
- cisplatina MeSH
- cystein MeSH
- sodíko-draslíková ATPasa MeSH
Mesocestoides vogae larvae represent a suitable model for evaluating the larvicidal potential of various compounds. In this study we investigated the in vitro effects of three natural flavonolignans-silybin (SB), 2,3-dehydrosilybin (DHSB) and silychristin (SCH)-on M. vogae larvae at concentrations of 5 and 50 μM under aerobic and hypoxic conditions for 72 h. With both kinds of treatment, the viability and motility of larvae remained unchanged, metabolic activity, neutral red uptake and concentrations of neutral lipids were reduced, in contrast with a significantly elevated glucose content. Incubation conditions modified the effects of individual FLs depending on their concentration. Under both sets of conditions, SB and SCH suppressed metabolic activity, the concentration of glucose, lipids and partially motility more at 50 μM, but neutral red uptake was elevated. DHSB exerted larvicidal activity and affected motility and neutral lipid concentrations differently depending on the cultivation conditions, whereas it decreased glucose concentration. DHSB at the 50 μM concentration caused irreversible morphological alterations along with damage to the microvillus surface of larvae, which was accompanied by unregulated neutral red uptake. In conclusion, SB and SCH suppressed mitochondrial functions and energy stores, inducing a physiological misbalance, whereas DHSB exhibited a direct larvicidal effect due to damage to the tegument and complete disruption of larval physiology and metabolism.
- Klíčová slova
- 2,3-dehydrosilybin, Mesocestoides vogae larvae, aerobic and hypoxic cultivation, silybin, silychristin,
- MeSH
- antioxidancia farmakologie MeSH
- hypoxie * MeSH
- larva účinky léků fyziologie MeSH
- Mesocestoides účinky léků fyziologie MeSH
- ochranné látky farmakologie MeSH
- silibinin farmakologie MeSH
- silymarin farmakologie MeSH
- techniky in vitro MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- antioxidancia MeSH
- dehydrosilybin MeSH Prohlížeč
- ochranné látky MeSH
- silibinin MeSH
- silychristin MeSH Prohlížeč
- silymarin MeSH