Most cited article - PubMed ID 27140711
Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive Rats' Exhibit-Impaired Vasodilator Response to Epoxyeicosatrienoic Acids
INTRODUCTION: The role of eicosanoids, metabolites of arachidonic acid with cardio-renal activity, remains unclear in human heart failure (HF). METHODS: We enrolled 50 patients with HF to measure plasma 14,15-EET and 14,15-DHET levels using commercial ELISA kits and compared them with 25 age- and sex-matched controls. RESULTS: Both of the measured eicosanoids were significantly higher in the HF group: 14,15-EET (91.3 ±25.7 ng/ml vs. 64.95 ±35.4 ng/ml) and 14,15-DHET (10.58 ±2.06 ng/ml vs. 9.07 ±1.60 ng/ml), p for both < 0.001. CONCLUSIONS: We found that peripheral plasma eicosanoid (14,15-EET, 14,15-DHET) levels are raised in patients with HF compared to age- and sex-matched controls.
- Keywords
- dihydroxyeicosatrienoic acid, eicosanoids, epoxyeicosatrienoic acid, heart failure,
- Publication type
- Journal Article MeSH
This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.
Cytochrome P450 (CYP-450) metabolites of arachidonic acid: epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) have established role in regulation of blood pressure (BP) and kidney function. EETs deficiency and increased renal formation of 20-HETE contribute to hypertension in spontaneously hypertensive rats (SHR). We explored the effects of 14,15-EET analog (EET-A) and of 20-HETE receptor blocker (AAA) on BP and kidney function in this model. In anesthetized SHR the responses were determined of mean arterial blood pressure (MABP), total renal (RBF), and cortical (CBF) and inner-medullary blood flows, glomerular filtration rate and renal excretion, to EET-A, 5 mg/kg, infused i.v. for 1 h to rats untreated or after blockade of endogenous EETs degradation with an inhibitor (c-AUCB) of soluble epoxide hydrolase. Also examined were the responses to AAA (10 mg/kg/h), given alone or together with EET-A. EET-A significantly increased RBF and CBF (+30% and 26%, respectively), seen already within first 30 min of infusion. The greatest increases in RBF and CBF (by about 40%) were seen after AAA, similar when given alone or combined with EET-A. MABP decreased after EET-A or AAA but not significantly after the combination thereof. In all groups, RBF, and CBF increases preceded the decrease in MABP. We found that in SHR both EET-A and AAA induced renal vasodilation but, unexpectedly, no additive effect was seen. We suggest that both agents have a definite therapeutic potential and deserve further experimental and clinical testing aimed at introduction of novel antihypertensive therapy.
- Keywords
- 20-HETE antagonist, EET analog, epoxyeicosatrienoic acids, hypertension, soluble epoxide hydrolase,
- Publication type
- Journal Article MeSH