Most cited article - PubMed ID 27595912
BAL31-NGS approach for identification of telomeres de novo in large genomes
Discoveries over the recent decade have demonstrated the unexpected diversity of telomere DNA motifs in nature. However, currently available resources, 'Telomerase database' and 'Plant rDNA database', contain just fragments of all relevant literature published over decades of telomere research as they have a different primary focus and limited updates. To fill this gap, we gathered data about telomere DNA sequences from a thorough literature screen as well as by analysing publicly available NGS data, and we created TeloBase (http://cfb.ceitec.muni.cz/telobase/) as a comprehensive database of information about telomere motif diversity. TeloBase is supplemented by internal taxonomy utilizing popular on-line taxonomic resources that enables in-house data filtration and graphical visualisation of telomere DNA evolutionary dynamics in the form of heat tree plots. TeloBase avoids overreliance on administrators for future data updates by having a simple form and community-curation system for application and approval, respectively, of new telomere sequences by users, which should ensure timeliness of the database and topicality. To demonstrate TeloBase utility, we examined telomere motif diversity in species from the fungal genus Aspergillus, and discovered (TTTATTAGGG)n sequence as a putative telomere motif in the plant family Chrysobalanaceae. This was bioinformatically confirmed by analysing template regions of identified telomerase RNAs.
- MeSH
- Databases, Genetic * MeSH
- Nucleotide Motifs MeSH
- Plants genetics MeSH
- Telomerase * genetics MeSH
- Telomere genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Telomerase * MeSH
Telomeres are essential nucleoprotein structures at the very ends of linear eukaryote chromosomes. They shelter the terminal genome territories against degradation and prevent the natural chromosome ends from being recognized by repair mechanisms as double-strand DNA breaks.There are two basic characteristics of telomeric DNA, its sequence and its length. The telomere sequence is important as a "landing area" for specific telomere-binding proteins, which function as signals and moderate the interactions required for correct telomere function. While the sequence forms the proper "landing surface" of telomeric DNA, its length is similarly important. Too short or exceptionally long telomere DNA cannot perform its function properly. In this chapter, methods for the investigation of these two basic telomere DNA characteristics are described, namely, telomere motif identification and telomere length measurement.
- Keywords
- BAL31-NGS, Pulsed-field gel electrophoresis (PFGE), Tandem repeats finder, Telomere, Terminal restriction fragments,
- MeSH
- DNA * genetics MeSH
- DNA Breaks, Double-Stranded MeSH
- Telomere-Binding Proteins genetics MeSH
- Telomere * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA * MeSH
- Telomere-Binding Proteins MeSH
In contrast to the catalytic subunit of telomerase, its RNA subunit (TR) is highly divergent in size, sequence and biogenesis pathways across eukaryotes. Current views on TR evolution assume a common origin of TRs transcribed with RNA polymerase II in Opisthokonta (the supergroup including Animalia and Fungi) and Trypanosomida on one hand, and TRs transcribed with RNA polymerase III under the control of type 3 promoter, found in TSAR and Archaeplastida supergroups (including e.g. ciliates and Viridiplantae taxa, respectively). Here, we focus on unknown TRs in one of the largest Animalia order - Hymenoptera (Arthropoda) with more than 300 available representative genomes. Using a combination of bioinformatic and experimental approaches, we identify their TRs. In contrast to the presumed type of TRs (H/ACA box snoRNAs transcribed with RNA Polymerase II) corresponding to their phylogenetic position, we find here short TRs of the snRNA type, likely transcribed with RNA polymerase III under the control of the type 3 promoter. The newly described insect TRs thus question the hitherto assumed monophyletic origin of TRs across Animalia and point to an evolutionary switch in TR type and biogenesis that was associated with the divergence of Arthropods.
- MeSH
- Eukaryota genetics MeSH
- Phylogeny MeSH
- Hymenoptera * genetics MeSH
- Nucleic Acid Conformation MeSH
- RNA Polymerase II genetics metabolism MeSH
- RNA Polymerase III genetics metabolism MeSH
- RNA genetics MeSH
- Plants genetics MeSH
- Telomerase * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- RNA Polymerase II MeSH
- RNA Polymerase III MeSH
- RNA MeSH
- Telomerase * MeSH
- telomerase RNA MeSH Browser
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel's anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel's early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
- Keywords
- FISH, NGS, TRAP, eukaryotic tree of life, interstitial telomere sequences, retroelements, satellite, subtelomere structure, telomerase RNA, telomere evolution,
- MeSH
- DNA MeSH
- Humans MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- DNA, Satellite * MeSH
- Base Sequence MeSH
- Telomere * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- DNA MeSH
- DNA, Satellite * MeSH
The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.
- MeSH
- Transcription, Genetic MeSH
- Nucleic Acid Conformation MeSH
- Evolution, Molecular * MeSH
- Mutation MeSH
- RNA, Plant biosynthesis chemistry genetics MeSH
- RNA Polymerase II metabolism MeSH
- RNA Polymerase III metabolism MeSH
- RNA biosynthesis chemistry genetics MeSH
- Sequence Alignment MeSH
- Telomerase biosynthesis chemistry genetics MeSH
- Telomere chemistry MeSH
- Transcriptome MeSH
- Viridiplantae genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- RNA, Plant MeSH
- RNA Polymerase II MeSH
- RNA Polymerase III MeSH
- RNA MeSH
- Telomerase MeSH
- telomerase RNA MeSH Browser
Telomeres are protective structures at the ends of eukaryotic chromosomes, and disruption of their nucleoprotein composition usually results in genome instability and cell death. Telomeric DNA sequences have generally been found to be exceptionally conserved in evolution, and the most common pattern of telomeric sequences across eukaryotes is (TxAyGz)n maintained by telomerase. However, telomerase-added DNA repeats in some insect taxa frequently vary, show unusual features, and can even be absent. It has been speculated about factors that might allow frequent changes in telomere composition in Insecta. Coleoptera (beetles) is the largest of all insect orders and based on previously available data, it seemed that the telomeric sequence of beetles varies to a great extent. We performed an extensive mapping of the (TTAGG)n sequence, the ancestral telomeric sequence in Insects, across the main branches of Coleoptera. Our study indicates that the (TTAGG)n sequence has been repeatedly or completely lost in more than half of the tested beetle superfamilies. Although the exact telomeric motif in most of the (TTAGG)n-negative beetles is unknown, we found that the (TTAGG)n sequence has been replaced by two alternative telomeric motifs, the (TCAGG)n and (TTAGGG)n, in at least three superfamilies of Coleoptera. The diversity of the telomeric motifs was positively related to the species richness of taxa, regardless of the age of the taxa. The presence/absence of the (TTAGG)n sequence highly varied within the Curculionoidea, Chrysomeloidea, and Staphylinoidea, which are the three most diverse superfamilies within Metazoa. Our data supports the hypothesis that telomere dysfunctions can initiate rapid genomic changes that lead to reproductive isolation and speciation.
- MeSH
- Coleoptera genetics MeSH
- DNA genetics MeSH
- Eukaryotic Cells physiology MeSH
- Phylogeny MeSH
- Genetic Techniques MeSH
- Tandem Repeat Sequences genetics MeSH
- Telomerase genetics MeSH
- Telomere genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Telomerase MeSH
Telomerase RNA (TR) carries the template for synthesis of telomere DNA and provides a scaffold for telomerase assembly. Fungal TRs are long and have been compared to higher eukaryotes, where they show considerable diversity within phylogenetically close groups. TRs of several Saccharomycetaceae were recently identified, however, many of these remained uncharacterised in the template region. Here we show that this is mainly due to high variability in telomere sequence. We predicted the telomere sequences using Tandem Repeats Finder and then we identified corresponding putative template regions in TR candidates. Remarkably long telomere units and the corresponding putative TRs were found in Tetrapisispora species. Notably, variable lengths of the annealing sequence of the template region (1-10 nt) were found. Consequently, species with the same telomere sequence may not harbour identical TR templates. Thus, TR sequence alone can be used to predict a template region and telomere sequence, but not to determine these exactly. A conserved feature of telomere sequences, tracts of adjacent Gs, led us to test the propensity of individual telomere sequences to form G4. The results show highly diverse values of G4-propensity, indicating the lack of ubiquitous conservation of this feature across Saccharomycetaceae.
- MeSH
- Benzothiazoles metabolism MeSH
- Fluorescence MeSH
- G-Quadruplexes MeSH
- Genetic Variation * MeSH
- Templates, Genetic * MeSH
- Reproducibility of Results MeSH
- RNA genetics MeSH
- Saccharomycetales genetics MeSH
- Base Sequence MeSH
- Telomerase genetics MeSH
- Telomere genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Benzothiazoles MeSH
- RNA MeSH
- Telomerase MeSH
- telomerase RNA MeSH Browser
- thioflavin T MeSH Browser
The gene coding for the telomerase reverse transcriptase (TERT) is essential for the maintenance of telomeres. Previously we described the presence of three TERT paralogs in the allotetraploid plant Nicotiana tabacum, while a single TERT copy was identified in the paleopolyploid model plant Arabidopsis thaliana. Here we examine the presence, origin and functional status of TERT variants in allotetraploid Nicotiana species of diverse evolutionary ages and their parental genome donors, as well as in other diploid and polyploid plant species. A combination of experimental and in silico bottom-up analyses of TERT gene copies in Nicotiana polyploids revealed various patterns of retention or loss of parental TERT variants and divergence in their functions. RT-qPCR results confirmed the expression of all the identified TERT variants. In representative plant and green algal genomes, our synteny analyses show that their TERT genes were located in a conserved locus that became advantageous after the divergence of eudicots, and the gene was later translocated in several plant groups. In various diploid and polyploid species, translocation of TERT became fixed in target loci that show ancient synapomorphy.
- Keywords
- Nicotiana, gene evolution, polyploidy, synteny, telomerase,
- MeSH
- Arabidopsis * enzymology genetics MeSH
- Gene Dosage * MeSH
- Polyploidy * MeSH
- Arabidopsis Proteins * genetics metabolism MeSH
- Nicotiana * enzymology genetics MeSH
- Telomerase * genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Arabidopsis Proteins * MeSH
- Telomerase * MeSH
- TERT protein, Arabidopsis MeSH Browser
Telomeres are basic structures of eukaryote genomes. They distinguish natural chromosome ends from double-stranded breaks in DNA and protect chromosome ends from degradation or end-to-end fusion with other chromosomes. Telomere sequences are usually tandemly arranged minisatellites, typically following the formula (TxAyGz)n. Although they are well conserved across large groups of organisms, recent findings in plants imply that their diversity has been underestimated. Changes in telomeres are of enormous evolutionary importance as they can affect whole-genome stability. Even a small change in the telomere motif of each repeat unit represents an important interference in the system of sequence-specific telomere binding proteins. Here, we provide an overview of telomere sequences, considering the latest phylogenomic evolutionary framework of plants in the broad sense (Archaeplastida), in which new telomeric sequences have recently been found in diverse and economically important families such as Solanaceae and Amaryllidaceae. In the family Lentibulariaceae and in many groups of green algae, deviations from the typical plant telomeric sequence have also been detected recently. Ancestry and possible homoplasy in telomeric motifs, as well as extant gaps in knowledge are discussed. With the increasing availability of genomic approaches, it is likely that more telomeric diversity will be uncovered in the future. We also discuss basic methods used for telomere identification and we explain the implications of the recent discovery of plant telomerase RNA on further research about the role of telomerase in eukaryogenesis or on the molecular causes and consequences of telomere variability.
- Keywords
- Allium, Cestrum, Genlisea, circular chromosomes, green algae, linear chromosomes, telomerase, telomeres,
- Publication type
- Journal Article MeSH
- Review MeSH
Knowledge of the fascinating world of DNA repeats is continuously being enriched by newly identified elements and their hypothetical or well-established biological relevance. Genomic approaches can be used for comparative studies of major repeats in any group of genomes, regardless of their size and complexity. Such studies are particularly fruitful in large genomes, and useful mainly in crop plants where they provide a rich source of molecular markers or information on indispensable genomic components (e.g., telomeres, centromeres, or ribosomal RNA genes). Surprisingly, in Allium species, a comprehensive comparative study of repeats is lacking. Here we provide such a study of two economically important species, Allium cepa (onion), and A. sativum (garlic), and their distantly related A. ursinum (wild garlic). We present an overview and classification of major repeats in these species and have paid specific attention to sequence conservation and copy numbers of major representatives in each type of repeat, including retrotransposons, rDNA, or newly identified satellite sequences. Prevailing repeats in all three studied species belonged to Ty3/gypsy elements, however they significantly diverged and we did not detect them in common clusters in comparative analysis. Actually, only a low number of clusters was shared by all three species. Such conserved repeats were for example 5S and 45S rDNA genes and surprisingly a specific and quite rare Ty1/copia lineage. Species-specific long satellites were found mainly in A. cepa and A. sativum. We also show in situ localization of selected repeats that could potentially be applicable as chromosomal markers, e.g., in interspecific breeding.
- Keywords
- Allium, RepeatExplorer, TAREAN, plant genome, rDNA, repeats, retrotransposon, satellite, telomere,
- MeSH
- Allium classification genetics MeSH
- Chromosomes, Plant MeSH
- Genome, Plant * MeSH
- Genomics * methods MeSH
- In Situ Hybridization, Fluorescence MeSH
- Nucleotide Motifs MeSH
- Retroelements MeSH
- DNA, Satellite MeSH
- Tandem Repeat Sequences MeSH
- Telomere MeSH
- Computational Biology methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Retroelements MeSH
- DNA, Satellite MeSH