Nejvíce citovaný článek - PubMed ID 27783182
Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope
The paper presents a methodology that combines experimental measurements and mathematical-physics analyses to investigate the flow behavior in a nozzle-equipped aperture associated with the solution of its impact on electron beam dispersion in an environmental scanning electron microscope (ESEM). The shape of the nozzle significantly influences the character of the supersonic flow beyond the aperture, especially the shape and type of shock waves, which are highly dense compared to the surrounding gas. These significantly affect the electron scattering, which influences the resulting image. This paper analyzes the effect of aperture and nozzle shaping under specific low-pressure conditions and its impact on the electron dispersion of the primary electron beam.
- Klíčová slova
- Ansys Fluent, CFD, ESEM, critical flow, electron dispersion, nozzle, shock wave,
- Publikační typ
- časopisecké články MeSH
This paper presents mathematical-physics analyses in the field of the influence of inserted sensors on the supersonic flow behind the nozzle. It evaluates differences in the flow in the area of atmospheric pressure and low pressure on the boundary of continuum mechanics. To analyze the formation of detached and conical shock waves and their distinct characteristics in atmospheric pressure and low pressure on the boundary of continuum mechanics, we conduct comparative analyses using two types of inserted sensors: flat end and tip. These analyses were performed in two variants, considering pressure ratios of 10:1 both in front of and behind the nozzle. The first variant involved using atmospheric pressure in the chamber in front of the nozzle. The second type of analysis was conducted with a pressure of 10,000 Pa in front of the nozzle. While this represents a low pressure at the boundary of continuum mechanics, it remains above the critical limit of 113 Pa. This deliberate choice was made as it falls within the team's research focus on low-pressure regions. Although it is situated at the boundary of continuum mechanics, it is intentionally within a pressure range where the viscosity values are not yet dependent on pressure. In these variants, the nature of the flow was investigated concerning the ratio of inertial and viscous flow forces under atmospheric pressure conditions, and it was compared with flow conditions at low pressure. In the low-pressure scenario, the ratio of inertial and viscous flow forces led to a significant reduction in the value of inertial forces. The results showed an altered flow character, characterized by a reduced tendency for the formation of cross-oblique shockwaves within the nozzle itself and the emergence of shockwaves with increased thickness. This increased thickness is attributed to viscous forces inhibiting the thickening of the shockwave itself. This altered flow character may have implications, such as influencing temperature sensing with a tipped sensor. The shockwave area may form in a very confined space in front of the tip, potentially impacting the results. Additionally, due to reduced inertial forces, the cone shock wave's angle is a few degrees larger than theoretical predictions, and there is no tilting due to lower inertial forces. These analyses serve as the basis for upcoming experiments in the experimental chamber designed specifically for investigations in the given region of low pressures at the boundary of continuum mechanics. The objective, in combination with mathematical-physics analyses, is to determine changes within this region of the continuum mechanics boundary where inertial forces are markedly lower than in the atmosphere but remain under the influence of unreduced viscosity.
- Klíčová slova
- Ansys Fluent, ESEM, critical flow, nozzle, one-dimensional flow theory, pressure sensors, sensing techniques for low pressures, temperature sensors,
- Publikační typ
- časopisecké články MeSH
Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.
- Klíčová slova
- Cell integrity, Fungal infection, In vitro cultivation, Phenolics, Plant defense, Root anatomy,
- MeSH
- Alternaria * účinky léků MeSH
- fenylalaninamoniaklyasa MeSH
- kořeny rostlin * účinky léků enzymologie mikrobiologie MeSH
- křemík * farmakologie MeSH
- nemoci rostlin mikrobiologie MeSH
- Sorghum * účinky léků enzymologie mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenylalaninamoniaklyasa MeSH
- křemík * MeSH
The Extended Low Temperature Method (ELTM) for the in-situ preparation of plant samples in an environmental scanning electron microscope enables carrying out repetitive topographical and material analysis at a higher resolution in the vacuum conditions of a scanning electron microscope or in the low gas pressure conditions of an environmental scanning electron microscope. The method does not require any chemical intervention and is thus suitable for imaging delicate structures rarely observable with common treatment methods. The method enables both sample stabilization as close to their native state as possible, as well as the transfer of the same sample from a low vacuum to an atmospheric condition for sample storage or later study. It is impossible for wet samples in the environmental scanning electron microscope. Our studies illustrate the high applicability of the ELTM for different types of plant tissue, from imaging of plant waxes at higher resolution, the morphological study of highly susceptible early somatic embryos to the elemental microanalysis of root cells. The method established here provides a very fast, universal and inexpensive solution for plant sample treatment usable in a commercial environmental scanning electron microscope equipped with a cooling Peltier stage.