Nejvíce citovaný článek - PubMed ID 28626275
In this study, we investigated the morphological and genetic variability of selected species belonging to the genus Chloridium sensu lato, some also referred to as chloridium-like asexual morphs and other undescribed morphologically similar fungi. These species do not conform to the revised generic concept and thus necessitate a re-evaluation in terms of taxonomy and phylogeny. The family Chaetosphaeriaceae (Chaetosphaeriales) encompasses a wide range of asexual morphotypes, and among them, the simplest form is represented by Chloridium sect. Chloridium. The morphological simplicity of the Chloridium morphotype has historically led to the amalgamation of numerous unrelated species, thereby creating a heterogeneous genus. By conducting phylogenetic reconstruction of four DNA loci and examining a set of 71 strains, including all available ex-type and other non-type strains as well as holotypes and other herbarium material, we were able to gain new insights into the relationships between these taxa. Phylogenetic analyses revealed that the studied species are distantly related to Chloridium sensu stricto and can be grouped into two orders in the Sordariomycetes. Within the Chaetosphaeriales, they formed nine well-separated genera in four clades, such as Cacumisporium, Caliciastrum gen. nov., Caligospora gen. nov., Capillisphaeria gen. nov., Curvichaeta, Fusichloridium, Geniculoseta gen. nov., Papillospora gen. nov., and Spicatispora gen. nov. We also established Chloridiopsiella gen. nov. and Chloridiopsis gen. nov. in Vermiculariopsiellales. Four new species and eight new combinations are proposed in these genera. Our study provides a clearer understanding of the genus Chloridium, its relationship to other morphologically similar fungi, and a new taxonomic treatment and molecular phylogeny to facilitate their accurate identification and classification in future research. Taxonomic novelties: New genera: Caliciastrum Réblová, Caligospora Réblová, Capillisphaeria Réblová, Chloridiopsiella Réblová, Chloridiopsis Réblová, Geniculoseta Réblová, Papillospora Réblová, Spicatispora Réblová; New species: Caliciastrum bicolor Réblová, Caligospora pannosa Réblová, Chloridiopsis syzygii Réblová, Gongromerizella silvana Réblová; New combinations: Caligospora dilabens (Réblová & W. Gams) Réblová, Capillisphaeria crustacea (Sacc.) Réblová, Chloridiopsiella preussii (W. Gams & Hol.-Jech.) Réblová, Chloridiopsis constrictospora (Crous et al.) Réblová, Geniculoseta preussii (W. Gams & Hol.-Jech.) Réblová, Papillospora hebetiseta (Réblová & W. Gams) Réblová, Spicatispora carpatica (Hol.-Jech. & Révay) Réblová, Spicatispora fennica (P. Karst.) Réblová; Epitypifications (basionyms): Chaetosphaeria dilabens Réblová & W. Gams, Chloridium cylindrosporum W. Gams & Hol.-Jech. Citation: Réblová M, Nekvindová J (2023). New genera and species with chloridium-like morphotype in the Chaetosphaeriales and Vermiculariopsiellales. Studies in Mycology 106: 199-258. doi: 10.3114/sim.2023.106.04.
- Klíčová slova
- Chaetosphaeria, conidiogenesis, lignicolous fungi, multi-locus, new taxa, phialide,
- Publikační typ
- časopisecké články MeSH
Chloridium is a little-studied group of soil- and wood-inhabiting dematiaceous hyphomycetes that share a rare mode of phialidic conidiogenesis on multiple loci. The genus has historically been divided into three morphological sections, i.e. Chloridium, Gongromeriza, and Psilobotrys. Sexual morphs have been placed in the widely perceived genus Chaetosphaeria, but unlike their asexual counterparts, they show little or no morphological variation. Recent molecular studies have expanded the generic concept to include species defined by a new set of morphological characters, such as the collar-like hyphae, setae, discrete phialides, and penicillately branched conidiophores. The study is based on the consilience of molecular species delimitation methods, phylogenetic analyses, ancestral state reconstruction, morphological hypotheses, and global biogeographic analyses. The multilocus phylogeny demonstrated that the classic concept of Chloridium is polyphyletic, and the original sections are not congeneric. Therefore, we abolish the existing classification and propose to restore the generic status of Gongromeriza and Psilobotrys. We present a new generic concept and define Chloridium as a monophyletic, polythetic genus comprising 37 species distributed in eight sections. In addition, of the taxa earlier referred to Gongromeriza, two have been redisposed to the new genus Gongromerizella. Analysis of published metabarcoding data showed that Chloridium is a common soil fungus representing a significant (0.3 %) proportion of sequence reads in environmental samples deposited in the GlobalFungi database. The analysis also showed that they are typically associated with forest habitats, and their distribution is strongly influenced by climate, which is confirmed by our data on their ability to grow at different temperatures. We demonstrated that Chloridium forms species-specific ranges of distribution, which is rarely documented for microscopic soil fungi. Our study shows the feasibility of using the GlobalFungi database to study the biogeography and ecology of fungi. Taxonomic novelties: New genus: Gongromerizella Réblová; New sections: Chloridium section Cryptogonytrichum Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Gonytrichopsis Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Metachloridium Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Volubilia Réblová, Hern.-Restr., M. Kolařík & F. Sklenar; New species: Chloridium bellum Réblová & Hern.-Restr., Chloridium biforme Réblová & Hern.-Restr., Chloridium detriticola Réblová & Hern.-Restr., Chloridium gamsii Réblová & Hern.-Restr., Chloridium guttiferum Réblová & Hern.-Restr., Chloridium moratum Réblová & Hern.-Restr., Chloridium peruense Réblová & Hern.-Restr., Chloridium novae-zelandiae Réblová & Hern.-Restr., Chloridium elongatum Réblová & Hern.-Restr., Chloridium volubile Réblová & Hern.-Restr.; New varieties: Chloridium bellum var. luteum Réblová & Hern.-Restr., Chloridium detriticola var. effusum Réblová & Hern.-Restr., Chloridium chloridioides var. convolutum Réblová & Hern.-Restr.; New combinations: Chloridium section Gonytrichum (Nees & T. Nees) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Mesobotrys (Sacc.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Pseudophialocephala (M.S. Calabon et al.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium simile (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium chloridioides (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium subglobosum (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium fuscum (Corda) Réblová & Hern.-Restr., Chloridium ypsilosporum (Hol.-Jech.) Réblová & Hern.-Restr., Chloridium costaricense (G. Weber et al.) Réblová & Hern.-Restr., Chloridium cuneatum (N.G. Liu et al.) Réblová & Hern.-Restr., Fusichloridium cylindrosporum (W. Gams & Hol.-Jech.) Réblová, Gongromeriza myriocarpa (Fr.) Réblová, Gongromeriza pygmaea (P. Karst.) Réblová, Gongromerizella lignicola (F. Mangenot) Réblová, Gongromerizella pachytrachela (W. Gams & Hol.-Jech) Réblová, Gongromerizella pini (Crous & Akulov) Réblová; New name: Chloridium pellucidum Réblová & Hern.-Restr.; Epitypifications (basionyms): Chaetopsis fusca Corda, Gonytrichum caesium var. subglobosum W. Gams & Hol.-Jech.; Lectotypification (basionym): Gonytrichum caesium Nees & T. Nees. Citation: Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M (2022). Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys. Studies in Mycology 103: 87-212. doi: 10.3114/sim.2022.103.04.
- Klíčová slova
- 35 new taxa, Chaetosphaeriaceae, molecular systematics, phialidic conidiogenesis, soil fungi, species delimitation methods, wood-inhabiting fungi,
- Publikační typ
- časopisecké články MeSH
The genus Codinaea is a phialidic, dematiaceous hyphomycete known for its intriguing morphology and turbulent taxonomic history. This polyphasic study represents a new, comprehensive view on the taxonomy, systematics, and biogeography of Codinaea and its relatives. Phylogenetic analyses of three nuclear loci confirmed that Codinaea is polyphyletic. The generic concept was emended; it includes four morphotypes that contribute to its morphological complexity. Ancestral inference showed that the evolution of some traits is correlated and that these traits previously used to delimit taxa at the generic level occur in species that were shown to be congeneric. Five lineages of Codinaea-like fungi were recognized and introduced as new genera: Codinaeella, Nimesporella, Stilbochaeta, Tainosphaeriella, and Xyladelphia. Dual DNA barcoding facilitated identification at the species level. Codinaea and its segregates thrive on decaying plants, rarely occurring as endophytes or plant pathogens. Environmental ITS sequences indicate that they are common in bulk soil. The geographic distribution found using GlobalFungi database was consistent with known data. Most species are distributed in either the Holarctic realm or tropical geographic regions. The ancestral climatic zone was temperate, followed by transitions to the tropics; these fungi evolved primarily in Eurasia and Americas, with subsequent transitions to Africa and Australasia.
- Klíčová slova
- 37 new taxa, GlobalFungi, ancestral inference, appendages, barcodes, molecular systematics, morphology, phialidic conidiogenesis,
- Publikační typ
- časopisecké články MeSH
The Iodosphaeriaceae is represented by the single genus, Iodosphaeria, which is composed of nine species with superficial, black, globose ascomata covered with long, flexuous, brown hairs projecting from the ascomata in a stellate fashion, unitunicate asci with an amyloid apical ring or ring lacking and ellipsoidal, ellipsoidal-fusiform or allantoid, hyaline, aseptate ascospores. Members of Iodosphaeria are infrequently found worldwide as saprobes on various hosts and a wide range of substrates. Only three species have been sequenced and included in phylogenetic analyses, but the type species, I. phyllophila, lacks sequence data. In order to stabilize the placement of the genus and family, an epitype for the type species was designated after obtaining ITS sequence data and conducting maximum likelihood and Bayesian phylogenetic analyses. Iodosphaeria foliicola occurring on overwintered Alnus sp. leaves is described as new. Five species in the genus form a well-supported monophyletic group, sister to the Pseudosporidesmiaceae in the Xylariales. Selenosporella-like and/or ceratosporium-like synasexual morphs were experimentally verified or found associated with ascomata of seven of the nine accepted species in the genus. Taxa included and excluded from Iodosphaeria are discussed.
- Klíčová slova
- 1 new taxon, epitypification, phylogeny, systematics, taxonomy,
- Publikační typ
- časopisecké články MeSH
Recent progress in the discovery of fungal diversity has been enabled by intensive mycological surveys in centres of global biodiversity. Descriptions of new fungal species have been almost routinely based on phenotypic studies coupled with single or multigene phylogenetic analyses of DNA sequence data. However, high accessibility of sequencing services together with an increasing amount of available molecular data are providing easier and less critical support for taxonomic novelties without carefully studying the phenotype, particularly morphology. As a result, the accelerated rate of species descriptions has been unfortunately accompanied by numerous cases of overlooking previously described and well documented species, some of them that have been known for more than a century. Here, we critically examined recent literature, phenotypic and molecular data, and detected multiple issues with putative novelties of asexual Ascomycota traditionally known as hyphomycetes. In order to fix these taxonomic problems, three new combinations within the genera Pleopunctum, Camposporium and Sporidesmium, and two new names in Camposporium are proposed. Moreover, three genera, Aquidictyomyces, Fusiconidium and Pseudohelminthosporium, together with nine species are reduced to synonymy. The examples outlined here clearly show the relevance of morphology in modern phylogenetic studies and the importance of more stringent 'quality controls' during biodiversity studies documenting the extensive fungal diversity in a speedy manner.
- Klíčová slova
- Asexual Ascomycota, Dothideomycetes, Five new taxa, Sordariomycetes,
- Publikační typ
- časopisecké články MeSH
The genus Catenularia (Chaetosphaeriaceae) was reviewed, and its relationships with morphologically similar fungi were evaluated using molecular and morphological data. Eleven species are accepted, four of which have been verified with molecular DNA data. The correct epithet 'cupulifera' is proposed for the type species C. cupulifera comb. nov. Four other combinations are proposed, namely C. catenulata comb. nov., C. elsikii comb. nov., C. minor comb. nov. and C. novae-zelandiae comb. nov. Catenularia is an uncommon fungus inhabiting mainly decaying bark, wood and bamboo culms of various hosts and shows a widespread geographical distribution. It is circumscribed for fungi with mononematous, macronematous, simple conidiophores with terminal monophialides, usually accompanied with capitate hyphae. The conidia are aseptate, brown, cuneiform to rounded-obconic with an angular outline, adhering in chains. The diagnostic values of taxonomic characteristics of capitate hyphae and conidia (i.e. colour, shape in transverse section, setulae and formation) at the generic level were evaluated. An account of morphology, taxonomy and phylogeny of species accepted in Catenularia is provided. Based on ribosomal DNA sequences, Chalarodes obpyramidata sp. nov., characterised by catenate, angular, hyaline conidia with apical setulae, is revealed as closely related to Catenularia. The new genus Fuscocatenula gen. nov. is proposed for catenularia-like fungi having pigmented conidia with protracted maturation and round outline, with two species accepted, F. submersa comb. nov. and F. variegata comb. nov. A new species Nawawia antennata sp. nov. is introduced and Nawawia is compared with morphologically similar taxa.
- Klíčová slova
- Chaetosphaeria, 10 taxonomic novelties, angular conidia, basipetal chain, lignicolous, molecular systematics, phialidic conidiogenesis,
- Publikační typ
- časopisecké články MeSH
Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae on living leaves of Backhousia citriodora, Pseudosydowia indooroopillyensis, Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil. Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand, Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.) and Mollisia asteliae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia banksii, Phaeosphaeria caricis-sectae from leaf spots of Carex secta. Norway, Cuphophyllus flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butyriboletus parachinarensis on soil in association with Quercus baloot. Poland, Hyalodendriella bialowiezensis on debris beneath fallen bark of Norway spruce Picea abies. Russia, Bolbitius sibiricus on à moss covered rotting trunk of Populus tremula, Crepidotus wasseri on debris of Populus tremula, Entoloma isborscanum on soil on calcareous grasslands, Entoloma subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula, Meruliopsis faginea on fallen dead branches of Fagus orientalis, Metschnikowia taurica from fruits of Ziziphus jujube, Suillus praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina. Slovakia, Hygrocybe fulgens on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa, Acrodontium burrowsianum on leaves of unidentified Poaceae, Castanediella senegaliae on dead pods of Senegalia ataxacantha, Cladophialophora behniae on leaves of Behnia sp., Colletotrichum cliviigenum on leaves of Clivia sp., Diatrype dalbergiae on bark of Dalbergia armata, Falcocladium heteropyxidicola on leaves of Heteropyxis canescens, Lapidomyces aloidendricola as epiphyte on brown stem of Aloidendron dichotomum, Lasionectria sansevieriae and Phaeosphaeriopsis sansevieriae on leaves of Sansevieria hyacinthoides, Lylea dalbergiae on Diatrype dalbergiae on bark of Dalbergia armata, Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on leaves of Syzygium chordatum, Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of Ekebergia pterophylla, Paracymostachys euphorbiae (incl. Paracymostachys gen. nov.) on leaf litter of Euphorbia ingens, Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis, Paramycosphaerella syzygii on leaf litter of Syzygium chordatum, Parateichospora phoenicicola (incl. Parateichospora gen. nov.) on leaves of Phoenix reclinata, Seiridium syzygii on twigs of Syzygium chordatum, Setophoma syzygii on leaves of Syzygium sp., Starmerella xylocopis from larval feed of an Afrotropical bee Xylocopa caffra, Teratosphaeria combreti on leaf litter of Combretum kraussii, Teratosphaericola leucadendri on leaves of Leucadendron sp., Toxicocladosporium pterocarpi on pods of Pterocarpus angolensis. Spain, Cortinarius bonachei with Quercus ilex in calcareus soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicicola (incl. Extremopsis gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on volcanic lapilii material, Tuber zambonelliae in calcareus soil. Sweden, Elaphomyces borealis on soil under Pinus sylvestris and Betula pubescens. Tanzania, Curvularia tanzanica on inflorescence of Cyperus aromaticus. Thailand, Simplicillium niveum on Ophiocordyceps camponoti-leonardi on underside of unidentified dicotyledonous leaf. USA, Calonectria californiensis on leaves of Umbellularia californica, Exophiala spartinae from surface sterilised roots of Spartina alterniflora, Neophaeococcomyces oklahomaensis from outside wall of alcohol distillery. Vietnam, Fistulinella aurantioflava on soil. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Cowan DA, Maggs-Kölling, et al. 2021. Fungal Planet description sheets: 1182-1283. Persoonia 46: 313-528. https://doi.org/10.3767/persoonia.2021.46.11.
- Klíčová slova
- ITS nrDNA barcodes, LSU, new taxa, systematics,
- Publikační typ
- časopisecké články MeSH
An order, family and genus are validated, seven new genera, 35 new species, two new combinations, two epitypes, two lectotypes, and 17 interesting new host and / or geographical records are introduced in this study. Validated order, family and genus: Superstratomycetales and Superstratomycetaceae (based on Superstratomyces ). New genera: Haudseptoria (based on Haudseptoria typhae); Hogelandia (based on Hogelandia lambearum); Neoscirrhia (based on Neoscirrhia osmundae); Nothoanungitopsis (based on Nothoanungitopsis urophyllae); Nothomicrosphaeropsis (based on Nothomicrosphaeropsis welwitschiae); Populomyces (based on Populomyces zwinianus); Pseudoacrospermum (based on Pseudoacrospermum goniomae). New species: Apiospora sasae on dead culms of Sasa veitchii (Netherlands); Apiospora stipae on dead culms of Stipa gigantea (Spain); Bagadiella eucalyptorum on leaves of Eucalyptus sp. (Australia); Calonectria singaporensis from submerged leaf litter (Singapore); Castanediella neomalaysiana on leaves of Eucalyptus sp. (Malaysia); Colletotrichum pleopeltidis on leaves of Pleopeltis sp. (South Africa); Coniochaeta deborreae from soil (Netherlands); Diaporthe durionigena on branches of Durio zibethinus (Vietnam); Floricola juncicola on dead culm of Juncus sp. (France); Haudseptoria typhae on leaf sheath of Typha sp. (Germany); Hogelandia lambearum from soil (Netherlands); Lomentospora valparaisensis from soil (Chile); Neofusicoccum mystacidii on dead stems of Mystacidium capense (South Africa); Neomycosphaerella guibourtiae on leaves of Guibourtia sp. (Angola); Niesslia neoexosporioides on dead leaves of Carex paniculata (Germany); Nothoanungitopsis urophyllae on seed capsules of Eucalyptus urophylla (South Africa); Nothomicrosphaeropsis welwitschiae on dead leaves of Welwitschia mirabilis (Namibia); Paracremonium bendijkiorum from soil (Netherlands); Paraphoma ledniceana on dead wood of Buxus sempervirens (Czech Republic); Paraphoma salicis on leaves of Salix cf. alba (Ukraine); Parasarocladium wereldwijsianum from soil (Netherlands); Peziza ligni on masonry and plastering (France); Phyllosticta phoenicis on leaves of Phoenix reclinata (South Africa); Plectosphaerella slobbergiarum from soil (Netherlands); Populomyces zwinianus from soil (Netherlands); Pseudoacrospermum goniomae on leaves of Gonioma kamassi (South Africa); Pseudopyricularia festucae on leaves of Festuca californica (USA); Sarocladium sasijaorum from soil (Netherlands); Sporothrix hypoxyli in sporocarp of Hypoxylon petriniae on Fraxinus wood (Netherlands); Superstratomyces albomucosus on Pycnanthus angolensis (Netherlands); Superstratomyces atroviridis on Pinus sylvestris (Netherlands); Superstratomyces flavomucosus on leaf of Hakea multilinearis (Australia); Superstratomyces tardicrescens from human eye specimen (USA); Taeniolella platani on twig of Platanus hispanica (Germany), and Tympanis pini on twigs of Pinus sylvestris (Spain). Citation: Crous PW, Hernández-Restrepo M, Schumacher RK, Cowan DA, Maggs-Kölling G, Marais E, Wingfield MJ, Yilmaz N, Adan OCG, Akulov A, Álvarez Duarte E, Berraf-Tebbal A, Bulgakov TS, Carnegie AJ, de Beer ZW, Decock C, Dijksterhuis J, Duong TA, Eichmeier A, Hien LT, Houbraken JAMP, Khanh TN, Liem NV, Lombard L, Lutzoni FM, Miadlikowska JM, Nel WJ, Pascoe IG, Roets F, Roux J, Samson RA, Shen M, Spetik M, Thangavel R, Thanh HM, Thao LD, van Nieuwenhuijzen EJ, Zhang JQ, Zhang Y, Zhao LL, Groenewald JZ (2021). New and Interesting Fungi. 4. Fungal Systematics and Evolution 7: 255-343. doi: 10.3114/fuse.2021.07.13.
- Klíčová slova
- ITS barcodes, biodiversity, multi-gene phylogeny, new taxa, systematics, typification,
- Publikační typ
- časopisecké články MeSH
The genera Menisporopsis, Multiguttulispora and Tainosphaeria (Chaetosphaeriaceae) are saprobes inhabiting decaying plant material. This study is based on an integrated morpho-molecular characterisation to assess their generic concepts and explore phylogenetic relationships. Menisporopsis is revealed as polyphyletic, and species with 1-septate conidia and synnemata growing unilaterally along the seta are placed in the new segregate genus Arcuatospora. Codinaea dimorpha and C. triseptata are shown to be congeneric with Multiguttulispora sympodialis, the type species. Two new combinations are proposed: M. sympodialis is found conspecific with M. dimorpha. The Tainosphaeria complex is resolved into three genera. We found that the morphological separation of three groups within the genus is consistent with phylogenetic relationships. Tainosphaeria s. str. is accepted with five species. Tainosphaeria aseptata and T. lunata are transferred to the newly erected Phialoturbella, whereas T. obclavata is revealed as conspecific with Phialogeniculata guadalcanalensis, reducing it to a synonym. A new genus Flectospora is erected for a chloridium-like fungus nested in the Tainosphaeria clade. Based on molecular evidence, we show that asymmetrical, scolecosporous ascospores are a unique teleomorphic characteristic among family members. Therefore, we propose new combinations for Chaetosphaeria hispida in Paragaeumannomyces and Ch. spinosa in the new genus Ericiosphaeria, both exhibiting this rare morphotype.
- Klíčová slova
- appendages, foliicolous, lignicolous, molecular systematics, phialidic conidiogenesis, taxonomic novelties,
- Publikační typ
- časopisecké články MeSH
Zanclospora (Chaetosphaeriaceae) is a neglected, phialidic dematiaceous hyphomycete with striking phenotypic heterogeneity among its species. Little is known about its global biogeography due to its extreme scarcity and lack of records verified by molecular data. Phylogenetic analyses of six nuclear loci, supported by phenotypic data, revealed Zanclospora as highly polyphyletic, with species distributed among three distantly related lineages in Sordariomycetes. Zanclospora is a pleomorphic genus with multiple anamorphic stages, of which phaeostalagmus-like and stanjehughesia-like are newly discovered. The associated teleomorphs were previously classified in Chaetosphaeria. The generic concept is emended, and 17 species are accepted, 12 of which have been verified with DNA sequence data. Zanclospora thrives on decaying plant matter, but it also occurs in soil or as root endophytes. Its global diversity is inferred from metabarcoding data and published records based on field observations. Phylogenies of the environmental ITS1 and ITS2 sequences derived from soil, dead wood and root samples revealed seven and 15 phylotypes. The field records verified by DNA data indicate two main diversity centres in Australasia and Caribbean/Central America. In addition, environmental ITS data have shown that Southeast Asia represents a third hotspot of Zanclospora diversity. Our data confirm that Zanclospora is a rare genus.
- Klíčová slova
- Chaetosphaeriales, GlobalFungi, conidiogenesis, geographic distribution, life cycle, molecular systematics, new typification, taxonomic novelties,
- Publikační typ
- časopisecké články MeSH