Most cited article - PubMed ID 29022903
Alternative mechanisms of miR-34a regulation in cancer
Biophysics is an interdisciplinary science that applies the theories and methods of physics to understand biological systems. It encompasses a wide range of topics, from the molecular mechanisms within cells to the physical properties of organisms and ecosystems. The goal of biophysics is to uncover the physical principles underlying the structure and function of biological molecules, cells, and cellular systems, providing a deeper understanding of life itself. The Institute of Biophysics, Czech Academy of Sciences (IBP) stands as a beacon of excellence in the field of biophysical research in the Czech Republic. This article delves into its history, structure, research areas, and major scientific achievements, highlighting the role of IBP in the global scientific community.
- Keywords
- Biophysical methods, Biophysics, DNA damage repair, Ionizing radiation, Radiotherapy,
- Publication type
- Journal Article MeSH
- Review MeSH
Neuroblastoma (NB) is an embryonic cancer that develops from neural crest stem cells, being one of the most common malignancies in children. The clinical manifestation of this disease is highly variable, ranging from spontaneous regression to increased aggressiveness, which makes it a major therapeutic challenge in pediatric oncology. The p53 family proteins p53 and TAp73 play a key role in protecting cells against genomic instability and malignant transformation. However, in NB, their activities are commonly inhibited by interacting proteins such as murine double minute (MDM)2 and MDMX, mutant p53, ΔNp73, Itch, and Aurora kinase A. The interplay between the p53/TAp73 pathway and N-MYC, a known biomarker of poor prognosis and drug resistance in NB, also proves to be decisive in the pathogenesis of this tumor. More recently, a strong crosstalk between microRNAs (miRNAs) and p53/TAp73 has been established, which has been the focused of great attention because of its potential for developing new therapeutic strategies. Collectively, this review provides an updated overview about the critical role of the p53/TAp73 pathway in the pathogenesis of NB, highlighting encouraging clues for the advance of alternative NB targeted therapies.
- Keywords
- N-MYC, miRNAs, neuroblastoma, p53 family proteins, targeted anticancer therapy,
- Publication type
- Journal Article MeSH
- Review MeSH
AIMS: Tuberous sclerosis complex (TSC) is a genetic disorder associated with dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1) signalling pathway. Neurodevelopmental disorders, frequently present in TSC, are linked to cortical tubers in the brain. We previously reported microRNA-34a (miR-34a) among the most upregulated miRs in tubers. Here, we characterised miR-34a expression in tubers with the focus on the early brain development and assessed the regulation of mTORC1 pathway and corticogenesis by miR-34a. METHODS: We analysed the expression of miR-34a in resected cortical tubers (n = 37) compared with autopsy-derived control tissue (n = 27). The effect of miR-34a overexpression on corticogenesis was assessed in mice at E18. The regulation of the mTORC1 pathway and the expression of the bioinformatically predicted target genes were assessed in primary astrocyte cultures from three patients with TSC and in SH-SY5Y cells following miR-34a transfection. RESULTS: The peak of miR-34a overexpression in tubers was observed during infancy, concomitant with the presence of pathological markers, particularly in giant cells and dysmorphic neurons. miR-34a was also strongly expressed in foetal TSC cortex. Overexpression of miR-34a in mouse embryos decreased the percentage of cells migrated to the cortical plate. The transfection of miR-34a mimic in TSC astrocytes negatively regulated mTORC1 and decreased the expression of the target genes RAS related (RRAS) and NOTCH1. CONCLUSIONS: MicroRNA-34a is most highly overexpressed in tubers during foetal and early postnatal brain development. miR-34a can negatively regulate mTORC1; however, it may also contribute to abnormal corticogenesis in TSC.
- Keywords
- TSC, mechanistic target of rapamycin, miRNA, migration, neurodevelopmental disorder,
- MeSH
- Astrocytes metabolism MeSH
- Child MeSH
- Adult MeSH
- Infant MeSH
- Humans MeSH
- MicroRNAs genetics metabolism MeSH
- Adolescent MeSH
- Young Adult MeSH
- Brain growth & development pathology MeSH
- Cerebral Cortex pathology MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Neurons pathology MeSH
- Child, Preschool MeSH
- Signal Transduction genetics MeSH
- Tuberous Sclerosis complications genetics pathology MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Mice MeSH
- Child, Preschool MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- MicroRNAs MeSH
- MIRN34 microRNA, human MeSH Browser
- MIRN34a microRNA, mouse MeSH Browser
MiR-34a belongs to the class of small non-coding regulatory RNAs and functions as a tumor suppressor. Under physiological conditions, miR-34a has an inhibitory effect on all processes related to cell proliferation by targeting many proto-oncogenes and silencing them on the post-transcriptional level. However, deregulation of miR-34a was shown to play important roles in tumorigenesis and processes associated with cancer progression, such as tumor-associated epithelial-mesenchymal transition, invasion, and metastasis. Moreover, further understanding of miR-34a molecular mechanisms in cancer are indispensable for the development of effective diagnosis and treatments. In this review, we summarized the current knowledge on miR-34a functions in human disease with an emphasis on its regulation and dysregulation, its role in human cancer, specifically head and neck squamous carcinoma and thyroid cancer, and emerging role as a disease diagnostic and prognostic biomarker and the novel therapeutic target in oncology.
- Keywords
- head and neck squamous cell carcinoma, miR-34a, thyroid cancer,
- Publication type
- Journal Article MeSH
- Review MeSH
Renal cell carcinoma (RCC) is a relatively rare malignancy of the urinary tract system. RCC is a heterogenous disease in terms of underlying histology and its associated underlying pathobiology, prognosis and treatment schedule. The most prevalent histological RCC subtype is clear-cell renal cell carcinoma (ccRCC), accounting for about 70-80% of all RCCs. Though the pathobiology and treatment schedule for ccRCC are well-established, non-ccRCC subtypes account for 20%-30% of RCC altogether, and their underlying molecular biology and treatment options are poorly defined. The class of non-coding RNAs-molecules that are generally not translated into proteins-are new cancer drivers and suppressors in all types of cancer. Of these, small non-coding microRNAs (miRNAs) contribute to carcinogenesis by regulating posttranscriptional gene silencing. Additionally, a growing body of evidence supports the role of long non-coding RNAs (lncRNAs) in cancer development and progression. Most studies on non-coding RNAs in RCC focus on clear-cell histology, and there is a relatively limited number of studies on non-ccRCC subtypes. The aim of this review is to give an overview of the current knowledge regarding the role of non-coding RNAs (including short and long non-coding RNAs) in non-ccRCC and to highlight possible implications as diagnostic, prognostic and predictive biomarkers.
- Keywords
- lncRNA, long noncoding RNA, miRNA, microRNA biomarker, non-clear cell, renal cell carcinoma,
- Publication type
- Journal Article MeSH
- Review MeSH