Nejvíce citovaný článek - PubMed ID 29076633
Diel regulation of photosynthetic activity in the oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501
Crocosphaera and Cyanothece are both unicellular, nitrogen-fixing cyanobacteria that prefer different environments. Whereas Crocosphaera mainly lives in nutrient-deplete, open oceans, Cyanothece is more common in coastal, nutrient-rich regions. Despite their physiological similarities, the factors separating their niches remain elusive. Here we performed physiological experiments on clone cultures and expand upon a simple ecological model to show that their different niches can be sufficiently explained by the observed differences in their photosynthetic capacities and rates of carbon (C) consumption. Our experiments revealed that Cyanothece has overall higher photosynthesis and respiration rates than Crocosphaera. A simple growth model of these microorganisms suggests that C storage and consumption are previously under-appreciated factors when evaluating the occupation of niches by different marine nitrogen fixers.
- Klíčová slova
- Carbon consumption, Niche separation, UCYN-B, UCYN-C,
- Publikační typ
- časopisecké články MeSH
The photoautotrophic, unicellular N2-fixer, Cyanothece, is a model organism that has been widely used to study photosynthesis regulation, the structure of photosystems, and the temporal segregation of carbon (C) and nitrogen (N) fixation in light and dark phases of the diel cycle. Here, we present a simple quantitative model and experimental data that together, suggest external dissolved inorganic carbon (DIC) concentration as a major limiting factor for Cyanothece growth, due to its high C-storage requirement. Using experimental data from a parallel laboratory study as a basis, we show that after the onset of the light period, DIC was rapidly consumed by photosynthesis, leading to a sharp drop in the rate of photosynthesis and C accumulation. In N2-fixing cultures, high rates of photosynthesis in the morning enabled rapid conversion of DIC to intracellular C storage, hastening DIC consumption to levels that limited further uptake. The N2-fixing condition allows only a small fraction of fixed C for cellular growth since a large fraction was reserved in storage to fuel night-time N2 fixation. Our model provides a framework for resolving DIC limitation in aquatic ecosystem simulations, where DIC as a growth-limiting factor has rarely been considered, and importantly emphasizes the effect of intracellular C allocation on growth rate that varies depending on the growth environment.
- Klíčová slova
- Biomass, CO2, Carbon, Carbon allocation, Carbon storage, Cellular growth, Computer simulation, Culture, Cyanothece, DIC, Diurnal cycle, Growth limitation, Mathematical model, Nitrate, Nitrogen fixation, Photosynthesis, Quantitative model, Turbidostat,
- Publikační typ
- časopisecké články MeSH
Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3 --supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.
- Klíčová slova
- Crocosphaera subtropica, Cyanothece, carbon limitation, light limitation, nitrogen fixation, photosynthesis,
- Publikační typ
- časopisecké články MeSH
Nitrogen-fixing organisms are of importance to the environment, providing bioavailable nitrogen to the biosphere. Quantitative models have been used to complement the laboratory experiments and in situ measurements, where such evaluations are difficult or costly. Here, we review the current state of the quantitative modeling of nitrogen-fixing organisms and ways to enhance the bridge between theoretical and empirical studies.
- Klíčová slova
- Mathematical model, Nitrogen fixation, Nitrogen fixers, Oxygen, Photosynthesis, Quantitative model,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nitrogen fixing plankton provide nitrogen to fuel marine ecosystems and biogeochemical cycles but the factors that constrain their growth and habitat remain poorly understood. Here we investigate the importance of metabolic specialization in unicellular diazotroph populations, using laboratory experiments and model simulations. In clonal cultures of Crocosphaera watsonii and Cyanothece sp. spiked with 15N2, cellular 15N enrichment developed a bimodal distribution within colonies, indicating that N2 fixation was confined to a subpopulation. In a model of population metabolism, heterogeneous nitrogen (N2) fixation rates substantially reduce the respiration rate required to protect nitrogenase from O2. The energy savings from metabolic specialization is highest at slow growth rates, allowing populations to survive in deeper waters where light is low but nutrients are high. Our results suggest that heterogeneous N2 fixation in colonies of unicellular diazotrophs confers an energetic advantage that expands the ecological niche and may have facilitated the evolution of multicellular diazotrophs.
- MeSH
- biologická evoluce * MeSH
- biologické modely MeSH
- Cyanothece růst a vývoj metabolismus MeSH
- dusík metabolismus MeSH
- ekosystém MeSH
- energetický metabolismus * MeSH
- fixace dusíku * MeSH
- fyziologická adaptace MeSH
- počítačová simulace MeSH
- sinice růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation1,2. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy3. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. 4) or super-rogue D1 (ref. 5), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. 4,6). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.
- MeSH
- chlorofyl analogy a deriváty biosyntéza MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- geneticky modifikované mikroorganismy metabolismus MeSH
- sekvenční analýza proteinů MeSH
- sinice genetika MeSH
- Synechocystis metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- chlorophyll f MeSH Prohlížeč
- fotosystém II (proteinový komplex) MeSH
Crocosphaera is a major dinitrogen (N2)-fixing microorganism, providing bioavailable nitrogen (N) to marine ecosystems. The N2-fixing enzyme nitrogenase is deactivated by oxygen (O2), which is abundant in marine environments. Using a cellular scale model of Crocosphaera sp. and laboratory data, we quantify the role of three O2 management strategies by Crocosphaera sp.: size adjustment, reduced O2 diffusivity, and respiratory protection. Our model predicts that Crocosphaera cells increase their size under high O2 Using transmission electron microscopy, we show that starch granules and thylakoid membranes are located near the cytoplasmic membranes, forming a barrier for O2 The model indicates a critical role for respiration in protecting the rate of N2 fixation. Moreover, the rise in respiration rates and the decline in ambient O2 with temperature strengthen this mechanism in warmer water, providing a physiological rationale for the observed niche of Crocosphaera at temperatures exceeding 20°C. Our new measurements of the sensitivity to light intensity show that the rate of N2 fixation reaches saturation at a lower light intensity (∼100 μmol m-2 s-1) than photosynthesis and that both are similarly inhibited by light intensities of >500 μmol m-2 s-1 This suggests an explanation for the maximum population of Crocosphaera occurring slightly below the ocean surface.IMPORTANCECrocosphaera is one of the major N2-fixing microorganisms in the open ocean. On a global scale, the process of N2 fixation is important in balancing the N budget, but the factors governing the rate of N2 fixation remain poorly resolved. Here, we combine a mechanistic model and both previous and present laboratory studies of Crocosphaera to quantify how chemical factors such as C, N, Fe, and O2 and physical factors such as temperature and light affect N2 fixation. Our study shows that Crocosphaera combines multiple mechanisms to reduce intracellular O2 to protect the O2-sensitive N2-fixing enzyme. Our model, however, indicates that these protections are insufficient at low temperature due to reduced respiration and the rate of N2 fixation becomes severely limited. This provides a physiological explanation for why the geographic distribution of Crocosphaera is confined to the warm low-latitude ocean.
- Klíčová slova
- Crocosphaera, carbon, cell flux model, daily cycle, iron, light, nitrogen, nitrogen fixation, oxygen, photosynthesis, temperature,
- MeSH
- fixace dusíku * MeSH
- kyslík metabolismus MeSH
- sinice cytologie metabolismus účinky záření MeSH
- škrob metabolismus MeSH
- světlo * MeSH
- teplota * MeSH
- transmisní elektronová mikroskopie MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- kyslík MeSH
- škrob MeSH
Unicellular nitrogen fixer Crocosphaera contributes substantially to nitrogen fixation in oligotrophic subtropical gyres. They fix nitrogen even when significant amounts of ammonium are available. This has been puzzling since fixing nitrogen is energetically inefficient compared with using available ammonium. Here we show that by fixing nitrogen, Crocosphaera can increase their population and expand their niche despite the presence of ammonium. We have developed a simple but mechanistic model of Crocosphaera based on their growth in steady state culture. The model shows that the growth of Crocosphaera can become nitrogen limited despite their capability to fix nitrogen. When they fix nitrogen, the population increases by up to 78% relative to the case without nitrogen fixation. When we simulate a simple ecological situation where Crocosphaera exists with non-nitrogen-fixing phytoplankton, the relative abundance of Crocosphaera increases with nitrogen fixation, while the population of non-nitrogen-fixing phytoplankton decreases since a larger fraction of fixed nitrogen is consumed by Crocosphaera. Our study quantitatively supports the benefit of nitrogen fixation despite the high electron/energy costs, even when an energetically efficient alternative is available. It demonstrates a competitive aspect of Crocosphaera, permitting them to be regionally significant nitrogen fixers.
- MeSH
- amoniové sloučeniny farmakologie MeSH
- biologické modely MeSH
- dusík metabolismus MeSH
- fixace dusíku účinky léků MeSH
- fosfor metabolismus MeSH
- fytoplankton účinky léků metabolismus MeSH
- počítačová simulace MeSH
- sinice účinky léků metabolismus MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniové sloučeniny MeSH
- dusík MeSH
- fosfor MeSH
- uhlík MeSH