Nejvíce citovaný článek - PubMed ID 29235459
PI3Kδ activates E2F1 synthesis in response to mRNA translation stress
Antisense transcripts play an important role in generating regulatory non-coding RNAs but whether these transcripts are also translated to generate functional peptides remains poorly understood. In this study, RNA sequencing and six-frame database generation were combined with mass spectrometry analysis of peptides isolated from polysomes to identify Nascent Pioneer Translation Products (Na-PTPs) originating from alternative reading frames of bi-directional transcripts. Two Na-PTP originating peptides derived from antisense strands stimulated CD8+ T cell proliferation when presented to peripheral blood mononuclear cells (PBMCs) from nine healthy donors. Importantly, an antigenic peptide derived from the reverse strand of two cDNA constructs was presented on MHC-I molecules and induced CD8+ T cell activation. The results demonstrate that three-frame translation of bi-directional transcripts generates antigenic peptide substrates for the immune system. This discovery holds significance for understanding the origin of self-discriminating peptide substrates for the major histocompatibility class I (MHC-I) pathway and for enhancing immune-based therapies against infected or transformed cells.
- Klíčová slova
- MHC-I epitope, Pioneer Translation Products, bi-directional transcripts, bi-directional translation, reverse strand antigenic peptides,
- MeSH
- aktivace lymfocytů imunologie MeSH
- antisense RNA * genetika imunologie MeSH
- CD8-pozitivní T-lymfocyty * imunologie MeSH
- leukocyty mononukleární imunologie MeSH
- lidé MeSH
- MHC antigeny I. třídy * imunologie genetika MeSH
- peptidy * imunologie genetika MeSH
- prezentace antigenu MeSH
- proteosyntéza * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antisense RNA * MeSH
- MHC antigeny I. třídy * MeSH
- peptidy * MeSH
Cellular stress conditions activate p53-dependent pathways to counteract the inflicted damage. To achieve the required functional diversity, p53 is subjected to numerous post-translational modifications and the expression of isoforms. Little is yet known how p53 has evolved to respond to different stress pathways. The p53 isoform p53/47 (p47 or ΔNp53) is linked to aging and neural degeneration and is expressed in human cells via an alternative cap-independent translation initiation from the 2nd in-frame AUG at codon 40 (+118) during endoplasmic reticulum (ER) stress. Despite an AUG codon in the same location, the mouse p53 mRNA does not express the corresponding isoform in either human or mouse-derived cells. High-throughput in-cell RNA structure probing shows that p47 expression is attributed to PERK kinase-dependent structural alterations in the human p53 mRNA, independently of eIF2α. These structural changes do not take place in murine p53 mRNA. Surprisingly, PERK response elements required for the p47 expression are located downstream of the 2nd AUG. The data show that the human p53 mRNA has evolved to respond to PERK-mediated regulation of mRNA structures in order to control p47 expression. The findings highlight how p53 mRNA co-evolved with the function of the encoded protein to specify p53-activities under different cellular conditions.
- MeSH
- kinasa eIF-2 genetika metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- myši MeSH
- nádorový supresorový protein p53 * genetika metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- protein - isoformy metabolismus MeSH
- stres endoplazmatického retikula * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kinasa eIF-2 MeSH
- messenger RNA MeSH
- nádorový supresorový protein p53 * MeSH
- protein - isoformy MeSH
The role of G-quadruplex (G4) RNA structures is multifaceted and controversial. Here, we have used as a model the EBV-encoded EBNA1 and the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded LANA1 mRNAs. We have compared the G4s in these two messages in terms of nucleolin binding, nuclear mRNA retention, and mRNA translation inhibition and their effects on immune evasion. The G4s in the EBNA1 message are clustered in one repeat sequence and the G4 ligand PhenDH2 prevents all G4-associated activities. The RNA G4s in the LANA1 message take part in similar multiple mRNA functions but are spread throughout the message. The different G4 activities depend on flanking coding and non-coding sequences and, interestingly, can be separated individually. Together, the results illustrate the multifunctional, dynamic and context-dependent nature of G4 RNAs and highlight the possibility to develop ligands targeting specific RNA G4 functions. The data also suggest a common multifunctional repertoire of viral G4 RNA activities for immune evasion.
- MeSH
- G-kvadruplexy * MeSH
- intergenová DNA chemie genetika MeSH
- lidé MeSH
- regulace genové exprese MeSH
- RNA virová MeSH
- RNA chemie genetika MeSH
- transport RNA MeSH
- virus Epsteinův-Barrové - jaderné antigeny chemie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- EBV-encoded nuclear antigen 1 MeSH Prohlížeč
- intergenová DNA MeSH
- RNA virová MeSH
- RNA MeSH
- virus Epsteinův-Barrové - jaderné antigeny MeSH
Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53's role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.
- Klíčová slova
- ATM kinase, DNA damage response, MDM2, RNA metabolism, RNA-binding proteins, mRNA translation, p53,
- MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- mutace MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- nepřekládané oblasti MeSH
- oprava DNA * fyziologie MeSH
- poškození DNA * MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- messenger RNA MeSH
- nádorový supresorový protein p53 MeSH
- nepřekládané oblasti MeSH
- proteiny vázající RNA MeSH
Virus-host interactions form an essential part of every aspect of life, and this review is aimed at looking at the balance between the host and persistent viruses with a focus on the immune system. The virus-host interaction is like a cat-and-mouse game and viruses have developed ingenious mechanisms to manipulate cellular pathways, most notably the major histocompatibility (MHC) class I pathway, to reside within infected cell while evading detection and destruction by the immune system. However, some of the signals sensing and responding to viral infection are derived from viruses and the fact that certain viruses can prevent the infection of others, highlights a more complex coexistence between the host and the viral microbiota. Viral immune evasion strategies also illustrate that processes whereby cells detect and present non-self genetic material to the immune system are interlinked with other cellular pathways. Immune evasion is a target also for cancer cells and a more detailed look at the interfaces between viral factors and components of the MHC class I peptide-loading complex indicates that these interfaces are also targets for cancer mutations. In terms of the immune checkpoint, however, viral and cancer strategies appear different.
- Klíčová slova
- cancer immune evasion, major histocompatibility (MHC) class I, viral immune evasion, viral persistence, virus–host interactions,
- MeSH
- imunitní únik * MeSH
- lidé MeSH
- MHC antigeny I. třídy imunologie MeSH
- nádory imunologie MeSH
- virové nemoci imunologie virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- MHC antigeny I. třídy MeSH
Cell growth requires a high level of protein synthesis and oncogenic pathways stimulate cell proliferation and ribosome biogenesis. Less is known about how cells respond to dysfunctional mRNA translation and how this feeds back into growth regulatory pathways. The Epstein-Barr virus (EBV)-encoded EBNA1 causes mRNA translation stress in cis that activates PI3Kδ. This leads to the stabilization of MDM2, induces MDM2's binding to the E2F1 mRNA and promotes E2F1 translation. The MDM2 serine 166 regulates the interaction with the E2F1 mRNA and deletion of MDM2 C-terminal RING domain results in a constitutive E2F1 mRNA binding. Phosphorylation on serine 395 following DNA damage instead regulates p53 mRNA binding to its RING domain and prevents the E2F1 mRNA interaction. The p14Arf tumour suppressor binds MDM2 and in addition to preventing degradation of the p53 protein it also prevents the E2F1 mRNA interaction. The data illustrate how two MDM2 domains selectively bind specific mRNAs in response to cellular conditions to promote, or suppress, cell growth and how p14Arf coordinates MDM2's activity towards p53 and E2F1. The data also show how EBV via EBNA1-induced mRNA translation stress targets the E2F1 and the MDM2 - p53 pathway.
- MeSH
- buněčný cyklus genetika MeSH
- fosforylace genetika MeSH
- karcinogeneze genetika MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- nádorový supresorový protein p14ARF genetika MeSH
- nádorový supresorový protein p53 genetika MeSH
- nádory genetika virologie MeSH
- onkogeny genetika MeSH
- poškození DNA genetika MeSH
- proliferace buněk genetika MeSH
- proteinové domény genetika MeSH
- protoonkogenní proteiny c-mdm2 genetika MeSH
- RRM proteiny genetika MeSH
- transkripční faktor E2F1 genetika MeSH
- tumor supresorové geny MeSH
- virus Epsteinův-Barrové genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- E2F1 protein, human MeSH Prohlížeč
- MDM2 protein, human MeSH Prohlížeč
- messenger RNA MeSH
- nádorový supresorový protein p14ARF MeSH
- nádorový supresorový protein p53 MeSH
- protoonkogenní proteiny c-mdm2 MeSH
- RRM proteiny MeSH
- TP53 protein, human MeSH Prohlížeč
- transkripční faktor E2F1 MeSH
Peptides presented on major histocompatibility (MHC) class I molecules form an essential part of the immune system's capacity to detect virus-infected or transformed cells. Earlier works have shown that pioneer translation peptides (PTPs) for the MHC class I pathway are as efficiently produced from introns as from exons, or from mRNAs targeted for the nonsense-mediated decay pathway. The production of PTPs is a target for viral immune evasion but the underlying molecular mechanisms that govern this non-canonical translation are unknown. Here, we have used different approaches to show how events taking place on the nascent transcript control the synthesis of PTPs and full-length proteins. By controlling the subcellular interaction between the G-quadruplex structure (G4) of a gly-ala encoding mRNA and nucleolin (NCL) and by interfering with mRNA maturation using multiple approaches, we demonstrate that antigenic peptides derive from a nuclear non-canonical translation event that is independently regulated from the synthesis of full-length proteins. Moreover, we show that G4 are exploited to control mRNA localization and translation by distinguishable mechanisms that are targets for viral immune evasion.
- MeSH
- antigeny genetika imunologie MeSH
- buněčné jádro genetika imunologie MeSH
- G-kvadruplexy MeSH
- imunitní únik genetika imunologie MeSH
- lidé MeSH
- messenger RNA genetika imunologie MeSH
- MHC antigeny I. třídy genetika imunologie MeSH
- nonsense mediated mRNA decay genetika imunologie MeSH
- peptidy genetika imunologie MeSH
- proteosyntéza genetika imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny MeSH
- messenger RNA MeSH
- MHC antigeny I. třídy MeSH
- peptidy MeSH
Ribosome and protein synthesis are major metabolic events that control cellular growth and proliferation. Impairment in ribosome biogenesis pathways and mRNA translation is associated with pathologies such as cancer and developmental disorders. Processes that control global protein synthesis are tightly regulated at different levels by numerous factors and linked with multiple cellular signaling pathways. Several of these merge on the growth promoting factor c-Myc, which induces ribosome biogenesis by stimulating Pol I, Pol II, and Pol III transcription. However, how cells sense and respond to mRNA translation stress is not well understood. It was more recently shown that mRNA translation stress activates c-Myc, through a specific induction of E2F1 synthesis via a PI3Kδ-dependent pathway. This review focuses on how this novel feedback pathway stimulates cellular growth and proliferation pathways to synchronize protein synthesis with ribosome biogenesis. It also describes for the first time the oncogenic activity of the mRNA, and not the encoded protein.
- Klíčová slova
- cell cycle, cell signaling pathway, mRNA translation stress, oncogene, ribosome biogenesis,
- MeSH
- buněčný cyklus MeSH
- fyziologický stres * MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- náchylnost k nemoci MeSH
- nádory etiologie metabolismus MeSH
- proliferace buněk MeSH
- proteosyntéza * MeSH
- ribozomy metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- messenger RNA MeSH