Most cited article - PubMed ID 29491492
Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling
BACKGROUND: Fine woody debris (FWD; deadwood < 10 cm diameter) is a crucial but often overlooked component of forest ecosystems. It provides habitat for microbial communities and enhances soil fertility through nutrient cycling. This role is especially important in managed forests, which typically have limited deadwood stocks. Climate change is increasing forest disturbances and expanding early successional forests with low canopy cover, yet the effects on microbial communities and related processes remain poorly understood. RESULTS: In a ten-year canopy manipulation experiment, we examined the decomposition of FWD of Fagus sylvatica and Abies alba. Increased canopy openness significantly decreased bacterial diversity in decomposing FWD and altered the community composition in surrounding soil. Decomposition time was the main factor shaping bacterial community structure in FWD, with tree species and canopy cover also contributing. We identified bacterial groups involved in carbohydrate degradation, fungal biomass breakdown, and nitrogen fixation. Importantly, bacterial communities in fully decomposed FWD remained distinct from soil communities. CONCLUSIONS: Deadwood decomposition and nutrient cycling are driven by complex ecological interactions. Microbial community dynamics are influenced by the interplay of FWD decomposition stage, tree species, and microclimatic conditions. Bacterial communities, although less frequently studied in this context, appear more stable over time than previously studied fungi. This stability may help sustain decomposition processes and nutrient turnover under the environmental variability associated with global change.
- Keywords
- Bacterial community, Canopy cover, Deadwood, Decomposition, Ecology, Fine woody debris, Microclimate, Succession, Temperate forest,
- Publication type
- Journal Article MeSH
Decomposition is a crucial process in terrestrial ecosystems, driving nutrient cycling and carbon storage dynamics. Considering the amount of fungal necromass produced in soils annually, its decomposition represents an important nutrient recycling process. Understanding the decomposition dynamics and associated microbial communities of fungal necromass is essential for elucidating ecosystem functioning, especially in environmentally sensitive regions such as the Arctic tundra, which remain under-explored. In a three-year field experiment conducted in the Svalbard archipelago, we investigated the decomposition of two types of fungal necromass with differing biochemical properties. We studied the decomposition rate, changes in chemical composition, and the succession of fungal and bacterial communities associated with the decaying fungal necromass. We discovered that up to 20% of fungal necromass remained even after three years of decomposition, indicating that the decomposition process was incomplete. Our results indicate the crucial role of Pseudogymnoascus in decomposing low-quality, highly melanized necromass with a high C:N ratio in Arctic soils, underscoring its importance in carbon cycling in the Arctic tundra. Notably, we observed dynamic changes in bacterial communities, with increasing richness over time and a shift from copiotrophic to oligotrophic species specializing in decomposing recalcitrant material. Our study indicates the strong potential that fungal necromass can play in carbon sequestration of arctic soils and reveals the distinct dynamics between rather stable fungal and rapidly changing bacterial communities associated with the decomposing fungal necromass in the Arctic tundra. These findings enhance our understanding of microbial succession during decomposition in extreme environments and highlight the potentially differing roles of fungi and bacteria in these processes.
- Keywords
- Arctic tundra, Bacterial communities, Decomposition, Fungal communities, Fungal necromass,
- Publication type
- Journal Article MeSH
BACKGROUND: Deadwood decomposition is an essential ecological process in forest ecosystems, playing a key role in nutrient cycling and carbon sequestration by enriching soils with organic matter. This process is driven by diverse microbial communities encompassing specialized functions in breaking down organic matter, but the specific roles of individual microorganisms in this process are still not fully understood. RESULTS: Here, we characterized the deadwood microbiome in a natural mixed temperate forest in Central Europe using PacBio HiFi long-read sequencing and a genome-resolved transcriptomics approach in order to uncover key microbial contributors to wood decomposition. We obtained high quality assemblies, which allowed attribution of complex microbial functions such as nitrogen fixation to individual microbial taxa and enabled the recovery of metagenome-assembled genomes (MAGs) from both abundant and rare deadwood bacteria. We successfully assembled 69 MAGs (including 14 high-quality and 7 single-contig genomes) from 4 samples, representing most of the abundant bacterial phyla in deadwood. The MAGs exhibited a rich diversity of carbohydrate-active enzymes (CAZymes), with Myxococcota encoding the highest number of CAZymes and the full complement of enzymes required for cellulose decomposition. For the first time we observed active nitrogen fixation by Steroidobacteraceae, as well as hemicellulose degradation and chitin recycling by Patescibacteria. Furthermore, PacBio HiFi sequencing identified over 1000 biosynthetic gene clusters, highlighting a vast potential for secondary metabolite production in deadwood, particularly in Pseudomonadota and Myxococcota. CONCLUSIONS: PacBio HiFi long-read sequencing offers comprehensive insights into deadwood decomposition processes by advancing the identification of functional features involving multiple genes. It represents a robust tool for unraveling novel microbial genomes in complex ecosystems and allows the identification of key microorganisms contributing to deadwood decomposition.
INTRODUCTION: Revegetation of barren substrates is often determined by the composition and distance of the nearest plant community, serving as a source of colonizing propagules. Whether such dispersal effect can be observed during the development of soil microbial communities, is not clear. In this study, we aimed to elucidate which factors structure plant and soil bacterial and fungal communities during primary succession on a limestone quarry spoil heap, focusing on the effect of distance to the adjoining xerophilous grassland. METHODS: We established a grid of 35 plots covering three successional stages - initial barren substrate, early successional community and late successional grassland ecosystem, the latter serving as the primary source of soil colonization. On these plots, we performed vegetation surveys of plant community composition and collected soil cores to analyze soil chemical properties and bacterial and fungal community composition. RESULTS: The composition of early successional plant community was significantly affected by the proximity of the source late successional community, however, the effect weakened when the distance exceeded 20 m. Early successional microbial communities were structured mainly by the local plant community composition and soil chemical properties, with minimal contribution of the source community proximity. DISCUSSION: These results show that on small spatial scales, species migration is an important determinant of plant community composition during primary succession while the establishment of soil microbial communities is not limited by dispersal and is primarily driven by local biotic and abiotic conditions.
- Keywords
- primary succession, soil bacterial community, soil fungal community, source habitat proximity, temperate grassland,
- Publication type
- Journal Article MeSH
Fomes fomentarius is a widespread, wood-rotting fungus of temperate, broadleaved forests. Although the fruiting bodies of F. fomentarius persist for multiple years, little is known about its associated microbiome or how these recalcitrant structures are ultimately decomposed. Here we used metagenomics and metatranscriptomics to analyse the microbial community associated with healthy living and decomposing F. fomentarius fruiting bodies to assess the functional potential of the fruiting body-associated microbiome and to determine the main players involved in fruiting body decomposition. F. fomentarius sequences in the metagenomes were replaced by bacterial sequences as the fruiting body decomposed. Most CAZymes expressed in decomposing fruiting bodies targeted components of the fungal cell wall with almost all chitin-targeting sequences, plus a high proportion of beta-glucan-targeting sequences, belonging to Arthropoda. We suggest that decomposing fruiting bodies of F. fomentarius represent a habitat rich in bacteria, while its decomposition is primarily driven by Arthropoda. Decomposing fruiting bodies thus represent a specific habitat supporting both microorganisms and microfauna.
- Keywords
- Fomes fomentarius, deadwood fungi, fruiting body, microbial communities, mycelium decomposition, temperate forest,
- MeSH
- Ascomycota * MeSH
- Bacteria genetics MeSH
- Arthropods * MeSH
- Coriolaceae * MeSH
- Microbiota * genetics MeSH
- Fruiting Bodies, Fungal MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: The hyphosphere of arbuscular mycorrhizal (AM) fungi is teeming with microbial life. Yet, the influence of nutrient availability or nutrient forms on the hyphosphere microbiomes is still poorly understood. METHODS: Here, we examined how the microbial community (prokaryotic, fungal, protistan) was affected by the presence of the AM fungus Rhizophagus irregularis in the rhizosphere and the root-free zone, and how different nitrogen (N) and phosphorus (P) supplements into the root-free compartment influenced the communities. RESULTS: The presence of AM fungus greatly affected microbial communities both in the rhizosphere and the root-free zone, with prokaryotic communities being affected the most. Protists were the only group of microbes whose richness and diversity were significantly reduced by the presence of the AM fungus. Our results showed that the type of nutrients AM fungi encounter in localized patches modulate the structure of hyphosphere microbial communities. In contrast we did not observe any effects of the AM fungus on (non-mycorrhizal) fungal community composition. Compared to the non-mycorrhizal control, the root-free zone with the AM fungus (i.e., the AM fungal hyphosphere) was enriched with Alphaproteobacteria, some micropredatory and copiotroph bacterial taxa (e.g., Xanthomonadaceae and Bacteroidota), and the poorly characterized and not yet cultured Acidobacteriota subgroup GP17, especially when phytate was added. Ammonia-oxidizing Nitrosomonas and nitrite-oxidizing Nitrospira were significantly suppressed in the presence of the AM fungus in the root-free compartment, especially upon addition of inorganic N. Co-occurrence network analyses revealed that microbial communities in the root-free compartment were complex and interconnected with more keystone species when AM fungus was present, especially when the root-free compartment was amended with phytate. CONCLUSION: Our study showed that the form of nutrients is an important driver of prokaryotic and eukaryotic community assembly in the AM fungal hyphosphere, despite the assumed presence of a stable and specific AM fungal hyphoplane microbiome. Predictable responses of specific microbial taxa will open the possibility of using them as co-inoculants with AM fungi, e.g., to improve crop performance.
- Keywords
- arbuscular mycorrhizal (AM) fungi/al, extraradical hyphae, hyphosphere, inorganic and organic, microbiome, networks, nutrient cycling, nutrient mobilization,
- Publication type
- Journal Article MeSH
Deadwood decomposition is responsible for a significant amount of carbon (C) turnover in natural forests. While fresh deadwood contains mainly plant compounds and is extremely low in nitrogen (N), fungal biomass and N content increase during decomposition. Here, we examined 18 genome-sequenced bacterial strains representing the dominant deadwood taxa to assess their adaptations to C and N utilization in deadwood. Diverse gene sets for the efficient decomposition of plant and fungal cell wall biopolymers were found in Acidobacteria, Bacteroidetes, and Actinobacteria. In contrast to these groups, Alphaproteobacteria and Gammaproteobacteria contained fewer carbohydrate-active enzymes and depended either on low-molecular-mass C sources or on mycophagy. This group, however, showed rich gene complements for N2 fixation and nitrate/nitrite reduction-key assimilatory and dissimilatory steps in the deadwood N cycle. We show that N2 fixers can obtain C independently from either plant biopolymers or fungal biomass. The succession of bacteria on decomposing deadwood reflects their ability to cope with the changing quality of C-containing compounds and increasing N content.
- Keywords
- bacterial genomes, cellulose, deadwood, mycophagy, nitrogen fixation,
- Publication type
- Journal Article MeSH
In temperate forests, climate seasonality restricts the photosynthetic activity of primary producers to the warm season from spring to autumn, while the cold season with temperatures below the freezing point represents a period of strongly reduced plant activity. Although soil microorganisms are active all-year-round, their expressions show seasonal patterns. This is especially visible on the ectomycorrhizal fungi, the most abundant guild of fungi in coniferous forests. We quantified the production of fungal mycelia using ingrowth sandbags in the organic layer of soil in temperate coniferous forest and analysed the composition of fungal communities in four consecutive seasons. We show that fungal biomass production is as low as 0.029 µg g-1 of sand in December-March, while it reaches 0.122 µg g-1 in June-September. The majority of fungi show distinct patterns of seasonal mycelial production, with most ectomycorrhizal fungi colonising ingrowth bags in the spring or summer, while the autumn and winter colonisation was mostly due to moulds. Our results indicate that fungal taxa differ in their seasonal patterns of mycelial production. Although fungal biomass turnover appears all-year-round, its rates are much faster in the period of plant activity than in the cold season.
- Keywords
- Picea abies, ectomycorrhiza, fungal ecology, metabarcoding, mycelial growth, soil fungi, temperate forest,
- Publication type
- Journal Article MeSH
Due to the ability of soil bacteria to solubilize minerals, fix N2 and mobilize nutrients entrapped in the organic matter, their role in nutrient turnover and plant fitness is of high relevance in forest ecosystems. Although several authors have already studied the organic matter decomposing enzymes produced by soil and plant root-interacting bacteria, most of the works did not account for the activity of cell wall-attached enzymes. Therefore, the enzyme deployment strategy of three bacterial collections (genera Luteibacter, Pseudomonas and Arthrobacter) associated with Quercus spp. roots was investigated by exploring both cell-bound and freely-released hydrolytic enzymes. We also studied the potential of these bacterial collections to produce enzymes involved in the transformation of plant and fungal biomass. Remarkably, the cell-associated enzymes accounted for the vast majority of the total activity detected among Luteibacter strains, suggesting that they could have developed a strategy to maintain the decomposition products in their vicinity, and therefore to reduce the diffusional losses of the products. The spectrum of the enzymes synthesized and the titres of activity were diverse among the three bacterial genera. While cellulolytic and hemicellulolytic enzymes were rather common among Luteibacter and Pseudomonas strains and less detected in Arthrobacter collection, the activity of lipase was widespread among all the tested strains. Our results indicate that a large fraction of the extracellular enzymatic activity is due to cell wall-attached enzymes for some bacteria, and that Quercus spp. root bacteria could contribute at different levels to carbon (C), phosphorus (P) and nitrogen (N) cycles.
- MeSH
- Bacteria cytology enzymology metabolism MeSH
- Cell Wall enzymology MeSH
- Quercus microbiology MeSH
- Endophytes * MeSH
- Hydrolysis MeSH
- Organic Chemicals metabolism MeSH
- Soil chemistry MeSH
- Rhizosphere * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Organic Chemicals MeSH
- Soil MeSH
Common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C) from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping) experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp.) with different photosynthetic metabolism types (C3 or C4). The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible) zone added with 15N-labeled plant (clover) residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night) or ambient temperature (25/21°C day/night) applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera) to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5) in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp.) in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as compared to ambient temperature. Although the development of CMN (particularly of the dominant Rhizophagus and Funneliformis spp.) was somewhat reduced under high temperature, plant P uptake benefits due to AMF inoculation remained well visible under both temperature regimes, though without imminent impact on plant biomass production that actually decreased due to inoculation with AMF.