Most cited article - PubMed ID 29532191
Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has frequently been applied to the analysis of biomolecules. Its strength resides not only in compound identification but particularly in acquiring molecular profiles providing a high discriminating power. The main advantages include its speed, simplicity, versatility, minimum sample preparation needs, and a relatively high tolerance to salts. Other benefits are represented by the possibility of automation, high throughput, sensitivity, accuracy, and good reproducibility, allowing quantitative studies. This review deals with the prominent use of MALDI-TOF MS profiling in food and beverage analysis ranging from the simple detection of sample constituents to quantifications of marker compounds, quality control, and assessment of product authenticity. This review summarizes relevant discoveries that have been obtained with milk and milk products, edible oils, wine, beer, flour, meat, honey, and other alimentary products. Marker molecules are specified: proteins and peptides for milk, cheeses, flour, meat, wine and beer; triacylglycerols and phospholipids for oils; and low-molecular-weight metabolites for wine, beer and chocolate. Special attention is paid to sample preparation techniques and the combination of spectral profiling and statistical evaluation methods, which is powerful for the differentiation of samples and the sensitive detection of frauds and adulterations.
- Keywords
- MALDI, adulteration, classification, differentiation, food, marker, mass spectrometry, milk, oil, protein,
- MeSH
- Milk * chemistry MeSH
- Oils MeSH
- Reproducibility of Results MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods MeSH
- Cheese * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Oils MeSH
Generally, enzyme immobilization on nanoparticles leads to nano-conjugates presenting partially preserved, or even absent, biological properties. Notwithstanding, recent research demonstrated that the coupling to nanomaterials can improve the activity of immobilized enzymes. Herein, xanthine oxidase (XO) was immobilized by self-assembly on peculiar naked iron oxide nanoparticles (surface active maghemite nanoparticles, SAMNs). The catalytic activity of the nanostructured conjugate (SAMN@XO) was assessed by optical spectroscopy and compared to the parent enzyme. SAMN@XO revealed improved catalytic features with respect to the parent enzyme and was applied for the electrochemical studies of xanthine. The present example supports the nascent knowledge concerning protein conjugation to nanoparticle as a means for the modulation of biological activity.
- Keywords
- catalytic properties, enzyme immobilization, metal nanoparticles, xanthine oxidases,
- Publication type
- Journal Article MeSH
Nano-ecotoxicology is extensively debated and nanomaterial surface reactivity is an emerging topic. Iron oxide nanoparticles are widely applied, with organic or inorganic coatings for stabilizing their suspensions. Surface active maghemite nanoparticles (SAMNs) are the unique example of naked iron oxide displaying high colloidal and structural stability in water and chemical reactivity. The colloidal behavior of SAMNs was studied as a function of the medium salinity and protocols of acute and chronic toxicity on Daphnia magna were consequently adapted. SAMN distribution into the crustacean, intake/depletion rates and swimming performances were evaluated. No sign of toxicity was detected in two model organisms from the first trophic level (P. subcapitata and L. minor). In D. magna, acute EC50 values of SAMN was assessed, while no sub-lethal effects were observed and the accumulation of SAMNs in the gut appeared as the sole cause of mortality. Fast depuration and absence of delayed effects indicated no retention of SAMNs within the organism. In spite of negligible toxicity on D. magna adults, SAMN surface reactivity was responsible of membrane bursting and lethality on embryos. The present study offers a contribution to the nascent knowledge concerning the impact of nanoparticle surface reactivity on biological interfaces.
- MeSH
- Survival Analysis MeSH
- Biological Assay MeSH
- Water Pollutants, Chemical toxicity MeSH
- Daphnia drug effects physiology MeSH
- Embryo, Nonmammalian drug effects physiology MeSH
- Metal Nanoparticles toxicity MeSH
- Locomotion drug effects MeSH
- Ferric Compounds toxicity MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Water Pollutants, Chemical MeSH
- ferric oxide MeSH Browser
- Ferric Compounds MeSH