Most cited article - PubMed ID 29617364
Refractoriness of Sergentomyia schwetzi to Leishmania spp. is mediated by the peritrophic matrix
BACKGROUND: We evaluated various membranes for blood-feeding in nine sand fly species from different genera and subgenera. Most of these species are vectors of human-pathogenic Leishmania, whereas Sergentomyia minuta is a herpetophilic sand fly species and a proven vector of Leishmania (Sauroleishmania) tarentolae. METHODS: Female sand flies were offered blood through a range of membranes (chicken, reptilian, and frog skin; synthetic collagen; pig intestine; and duck foot webbing). Two feeding systems (glass feeder, Hemotek) and different blood sources (human, ovine, avian, and reptilian) were used. Feeding trials were conducted under varying thermal and light conditions to determine the optimal parameters. RESULTS: Among the 4950 female S. minuta tested, only a negligible fraction took a blood meal: 2% of the females fed on avian blood, and 0.2% of the females fed on human blood. In eight other species, the chicken membrane was generally more effective than synthetic membranes or pig intestines. For example, Phlebotomus duboscqi refused synthetic membranes, while Lutzomyia longipalpis and P. perniciosus avoided both synthetic membranes and pig intestines. The most effective membrane was duck foot webbing, with four species feeding more readily through it than through the chicken membrane. Additionally, applying coagulated blood plasma to the outer surface of chicken or synthetic membranes significantly increased feeding rates. CONCLUSIONS: Female S. minuta did not reliably feed on blood through the tested membranes, preventing laboratory infection experiments from confirming their vector competence for human-pathogenic Leishmania. However, for future experimental infections of other sand fly species, duck foot webbing has emerged as an effective membrane, and the application of blood plasma to the exterior of membranes may increase the feeding rates.
- Keywords
- Leishmania, Lutzomyia, Phlebotomus, Sergentomyia minuta, Artificial feeding, Vector competence,
- MeSH
- Blood * MeSH
- Humans MeSH
- Membranes MeSH
- Swine MeSH
- Psychodidae * physiology MeSH
- Feeding Behavior * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Sand flies infect more than 1 million people annually with Leishmania parasites and other bacterial and viral pathogens. Progress in understanding sand fly adaptations to xenobiotics has been hampered by the limited availability of genomic resources. To address this gap, we sequenced, assembled, and annotated the transcriptomes of 11 phlebotomine sand fly species. Subsequently, we leveraged these genomic resources to generate novel evolutionary insights pertaining to their adaptations to xenobiotics, including those contributing to insecticide resistance. Specifically, we annotated over 2,700 sand fly detoxification genes and conducted large-scale phylogenetic comparisons to uncover the evolutionary dynamics of the five major detoxification gene families: cytochrome P450s (CYPs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs), carboxyl/cholinesterases (CCEs), and ATP-binding cassette (ABC) transporters. Using this comparative approach, we show that sand flies have evolved diverse CYP and GST gene repertoires, with notable lineage-specific expansions in gene groups evolutionarily related to known xenobiotic metabolizers. Furthermore, we show that sand flies have conserved orthologs of (i) CYP4G genes involved in cuticular hydrocarbon biosynthesis, (ii) ABCB genes involved in xenobiotic toxicity, and (iii) two primary insecticide targets, acetylcholinesterase-1 (Ace1) and voltage gated sodium channel (VGSC). The biological insights and genomic resources produced in this study provide a foundation for generating and testing hypotheses regarding the molecular mechanisms underlying sand fly adaptations to xenobiotics.
- Keywords
- comparative genomics, cytochrome P450s, gene family evolution, phlebotomine sand flies, xenobiotic adaptation,
- MeSH
- Phylogeny * MeSH
- Genomics MeSH
- Glutathione Transferase genetics metabolism MeSH
- Insecticides * pharmacology MeSH
- Inactivation, Metabolic genetics MeSH
- Evolution, Molecular * MeSH
- Psychodidae * genetics MeSH
- Insecticide Resistance * genetics MeSH
- Cytochrome P-450 Enzyme System genetics metabolism MeSH
- Xenobiotics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Glutathione Transferase MeSH
- Insecticides * MeSH
- Cytochrome P-450 Enzyme System MeSH
- Xenobiotics MeSH
Leishmaniasis (or the leishmaniases), classified as a neglected tropical parasitic disease, is found in parts of the tropics, subtropics and southern Europe. Leishmania parasites are transmitted by the bite of phlebotomine sand flies and million cases of human infection occur annually. Leishmania tarentolae has been historically considered a non-pathogenic protozoan of reptiles, which has been studied mainly for its potential biotechnological applications. However, some strains of L. tarentolae appear to be transiently infective to mammals. In areas where leishmaniasis is endemic, recent molecular diagnostics and serological positivity to L. tarentolae in humans and dogs have spurred interest in the interactions between these mammalian hosts, reptiles and Leishmania infantum, the main aetiologic agent of human and canine leishmaniasis. In this review, we discuss the systematics and biology of L. tarentolae in the insect vectors and the vertebrate hosts and address questions about evolution of reptilian leishmaniae. Furthermore, we discuss the possible usefulness of L. tarentolae for new vaccination strategies.
- Keywords
- Leishmania infantum, Leishmania tarentolae, Sauroleishmania, Sergentomyia, leishmaniasis/leishmaniases, vaccine,
- MeSH
- Insect Vectors parasitology MeSH
- Leishmania infantum * MeSH
- Leishmaniasis * epidemiology prevention & control veterinary MeSH
- Humans MeSH
- Dog Diseases * epidemiology parasitology prevention & control MeSH
- Dogs MeSH
- Psychodidae * parasitology MeSH
- Mammals MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Geographicals
- Europe MeSH
BACKGROUND: Species belonging to the subgenus Sauroleishmania are parasites of reptiles, and traditionally considered to be non-pathogenic to mammals. Knowledge of the development of these parasites in sand flies and their mechanism of transmission is currently lacking. The main aim of this study was to test the susceptibility of various sand fly species to infection by two Sauroleishmania species, focusing on the localization of parasites in the sand fly intestinal tract. METHODS: The development of Leishmania (Sauroleishmania [S.]) adleri and Leishmania (S.) hoogstraali was studied in six sand fly species (Phlebotomus orientalis, P. argentipes, P. sergenti, P. papatasi, P. duboscqi, Sergentomyia schwetzi). Sand flies were fed through a chick-skin membrane on blood containing Sauroleishmania promastigotes, and they were dissected at various time intervals post blood meal (PBM). Guts were examined microscopically for the presence of parasites, and the intensity and localizations of infections were recorded. Morphological forms of both Sauroleishmania species developing in P. orientalis were analyzed. Experimental infections of geckos using sand fly-derived promastigotes were also performed, and the reptiles were repeatedly examined for Sauroleishmania infection by xenodiagnosis and PCR analysis. RESULTS: High infection rates for both Sauroleishmania species were observed in P. orientalis and P. argentipes, with the parasites migrating anteriorly and undergoing a peripylarian type of development, including colonization of the stomodeal valve. Conversely, the development of L. (S.) adleri in P. sergenti, P. papatasi and Se. schwetzi was restricted to the sand fly hindgut (hypopylarian type of development). Five morphological forms were distinguished for both Sauroleishmania species developing in P. orientalis. All experimentally infected geckos scored negative for Sauroleishmania based on xenodiagnosis and molecular analysis. CONCLUSIONS: The results showed that Sauroleishmania promastigotes can undergo either a peripylarian or hypopylarian type of development in the sand fly intestinal tract, depending on the sand fly species infected. We demonstrated that P. argentipes and P. orientalis, two sand fly species known as permissive vectors for mammalian parasites of subgenus Leishmania, are also highly susceptible to Sauroleishmania as the parasites developed mature late-stage infections, including colonization of the sand fly stomodeal valve. Thus, the role of Phlebotomus sand flies in transmission of Sauroleishmania should be reconsidered and further investigated.
- Keywords
- Geckos, Leishmaniasis, Phlebotomus, Sand flies, Sauroleishmania, Sergentomyia,
- MeSH
- Lizards * MeSH
- Leishmania * MeSH
- Phlebotomus * parasitology MeSH
- Psychodidae * parasitology MeSH
- Mammals MeSH
- Xenodiagnosis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Leishmania parasites, causative agents of leishmaniasis, are currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania and Mundinia. The recently established subgenus Mundinia has a wide geographical distribution and contains five species, three of which have the potential to infect and cause disease in humans. While the other Leishmania subgenera are transmitted exclusively by phlebotomine sand flies (Diptera: Psychodidae), natural vectors of Mundinia remain uncertain. This study investigates the potential of sand flies and biting midges of the genus Culicoides (Diptera: Ceratopogonidae) to transmit Leishmania parasites of the subgenus Mundinia. Sand flies (Phlebotomus argentipes, P. duboscqi and Lutzomyia migonei) and Culicoides biting midges (Culicoides sonorensis) were exposed to five Mundinia species through a chicken skin membrane and dissected at specific time intervals post bloodmeal. Potentially infected insects were also allowed to feed on ear pinnae of anaesthetized BALB/c mice and the presence of Leishmania DNA was subsequently confirmed in the mice using polymerase chain reaction analyses. In C. sonorensis, all Mundinia species tested were able to establish infection at a high rate, successfully colonize the stomodeal valve and produce a higher proportion of metacyclic forms than in sand flies. Subsequently, three parasite species, L. martiniquensis, L. orientalis and L. sp. from Ghana, were transmitted to the host mouse ear by C. sonorensis bite. In contrast, transmission experiments entirely failed with P. argentipes, although colonisation of the stomodeal valve was observed for L. orientalis and L. martiniquensis and metacyclic forms of L. orientalis were recorded. This laboratory-based transmission of Mundinia species highlights that Culicoides are potential vectors of members of this ancestral subgenus of Leishmania and we suggest further studies in endemic areas to confirm their role in the lifecycles of neglected pathogens.
- MeSH
- Ceratopogonidae parasitology MeSH
- Insect Vectors parasitology MeSH
- Leishmania * MeSH
- Leishmaniasis transmission MeSH
- Mice MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: During blood feeding, sand flies inoculate salivary proteins that interact with the host haemostatic system. The blocking of biogenic amines such as serotonin and histamine helps to limit vasodilatation and clot formation, and thus enables the insect to finish the blood-feeding process. In sand flies, an amine-binding ability is known only for the yellow-related proteins of Phlebotomus and Lutzomyia vectors, but not yet for members of the genus Sergentomyia. METHODS: The ability of Phlebotomus argentipes and Sergentomyia schwetzi recombinant yellow-related salivary proteins to bind histamine and serotonin was measured by microscale thermophoresis. Both sand fly species were also fed through a chicken-skin membrane on blood mixed with histamine or serotonin in order to check the effects of biogenic amines on sand fly fitness. Additionally, fecundity and mortality were compared in two groups of P. argentipes females fed on repeatedly-bitten and naive hamsters, respectively. RESULTS: The P. argentipes recombinant yellow-related protein PagSP04 showed high binding affinity to serotonin and low affinity to histamine. No binding activity was detected for two yellow-related proteins of S. schwetzi. Elevated concentrations of serotonin significantly reduced the amount of eggs laid by P. argentipes when compared to the control. The fecundity of S. schwetzi and the mortality of both sand fly species were not impaired after the experimental membrane feeding. Additionally, there were no differences in oviposition or mortality between P. argentipes females fed on immunized or naive hamsters. CONCLUSIONS: Our results suggest that in natural conditions sand flies are able to cope with biogenic amines or anti-saliva antibodies without any influence on their fitness. The serotonin binding by salivary yellow-related proteins may play an important role in Phlebotomus species feeding on mammalian hosts, but not in S. schwetzi, which is adapted to reptiles.
- Keywords
- Anti-saliva antibodies, Histamine, Mortality, Oviposition, Phlebotomus argentipes, Sergentomyia schwetzi, Serotonin, Yellow-related proteins,
- MeSH
- Biogenic Amines * blood pharmacology MeSH
- Fertility drug effects MeSH
- Histamine blood MeSH
- Insect Proteins chemistry metabolism MeSH
- Insect Bites and Stings immunology MeSH
- Cricetinae MeSH
- Blood metabolism MeSH
- Evolution, Molecular MeSH
- Mortality MeSH
- Phlebotomus metabolism MeSH
- Reptiles MeSH
- Antibodies MeSH
- Psychodidae metabolism MeSH
- Recombinant Proteins chemistry metabolism MeSH
- Mammals MeSH
- Serotonin blood MeSH
- Salivary Proteins and Peptides * chemistry metabolism MeSH
- Saliva immunology MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Cricetinae MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biogenic Amines * MeSH
- Histamine MeSH
- Insect Proteins MeSH
- Antibodies MeSH
- Recombinant Proteins MeSH
- Serotonin MeSH
- Salivary Proteins and Peptides * MeSH