Nejvíce citovaný článek - PubMed ID 29673874
Metabolic syndrome is a prevalent disease resulting from an interplay of genomic component and the exposome. Parental diet has been shown to affect offspring metabolic health via multiple epigenetic mechanisms. Excess carbohydrate intake is one of the driving forces of the obesity and metabolic syndrome pandemics. This review summarizes the evidence for the effects of maternal carbohydrate (fructose, sucrose, glucose) overnutrition on the modulation of metabolic syndrome components in the offspring. Despite substantial discrepancies in experimental design, common effects of maternal carbohydrate overnutrition include increased body weight and hepatic lipid content of the "programmed" offspring. However, the administration of sucrose to several rat models leads to apparently favorable metabolic outcomes. Moreover, there is evidence for the role of genomic background in modulating the metabolic programming effect in the form of nutri-epigenomic interaction. Comprehensive, robust studies are needed to resolve the temporal, sex-specific, genetic, epigenetic and nutritional aspects of parental overnutrition in the intergenerational and transgenerational pathogenesis of metabolic syndrome.
- MeSH
- fruktosa MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metabolický syndrom * genetika MeSH
- nadměrná výživa * komplikace metabolismus MeSH
- rodiče MeSH
- zpožděný efekt prenatální expozice * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fruktosa MeSH
Overnutrition in pregnancy and lactation affects fetal and early postnatal development, which can result in metabolic disorders in adulthood. We tested a hypothesis that variation of the Zbtb16 gene, a significant energy metabolism regulator, modulates the effect of maternal high-sucrose diet (HSD) on metabolic and transcriptomic profiles of the offspring. We used the spontaneously hypertensive rat (SHR) strain and a minimal congenic rat strain SHR-Zbtb16, carrying the Zbtb16 gene allele originating from the PD/Cub rat, a metabolic syndrome model. Sixteen-week-old SHR and SHR-Zbtb16 rat dams were fed either standard diet (control groups) or a high-sucrose diet (HSD, 70% calories as sucrose) during pregnancy and 4 weeks of lactation. In dams of both strains, we observed an HSD-induced increase of cholesterol and triacylglycerol concentrations in VLDL particles and a decrease of cholesterol and triacylglycerols content in medium to very small LDL particles. In male offspring, exposure to maternal HSD substantially increased brown fat weight in both strains, decreased triglycerides in LDL particles, and impaired glucose tolerance exclusively in SHR. The transcriptome assessment revealed networks of transcripts reflecting the shifts induced by maternal HSD with major nodes including mir-126, Hsd11b1 in the brown adipose tissue, Pcsk9, Nr0b2 in the liver and Hsd11b1, Slc2a4 in white adipose tissue. In summary, maternal HSD feeding during pregnancy and lactation affected brown fat deposition and lipid metabolism in adult male offspring and induced major transcriptome shifts in liver, white, and brown adipose tissues. The Zbtb16 variation present in the SHR-Zbtb16 led to several strain-specific effects of the maternal HSD, particularly the transcriptomic profile shifts of the adult male offspring.
- Klíčová slova
- DOHAD, Zbtb16, high-sucrose diet, maternal nutrition, transcriptomics,
- Publikační typ
- časopisecké články MeSH
Both prenatal and postnatal excessive consumption of dietary sucrose or fructose was shown to be detrimental to health and contributing to pathogenesis of metabolic syndrome. Our knowledge of genetic determinants of individual sensitivity to sucrose-driven metabolic effects is limited. In this study, we have tested the hypothesis that a variation of metabolic syndrome-related gene, Zbtb16 (Zinc Finger and BTB Domain Containing 16 will affect the reaction to high-sucrose diet (HSD) content in "matched" nutritional exposition settings, i.e. maternal HSD with re-exposition to HSD in adulthood vs. standard diet. We compared metabolic profiles of adult males of spontaneously hypertensive rats (SHR) and a single-gene, minimal congenic strain SHR-Zbtb16 fed either standard diet or exposed to HSD prenatally throughout gestation and nursing and again at the age of 6 months for the period of 14 days. HSD exposition led to increased adiposity in both strains and decrease of glucose tolerance and cholesterol (Ch) concentrations in majority of low-density lipoprotein (LDL) particle classes and in very large and large high-density lipoprotein (HDL) in SHR-Zbtb16 male offspring. There was a similar pattern of HSD-induced increase of triacylglycerols in chylomicrons and very low-density lipoprotein (VLDL) of both strains, though the increase of (triacylglycerol) TAG content was clearly more pronounced in SHR. We observed significant STRAIN*DIET interactions for the smallest LDL particles as their TAG content decreased in SHR-Zbtb16 and did not change in SHR in response to HSD. In summary, we provide evidence of nutrigenetic interaction between Zbtb16 and HSD in context of pathogenesis of metabolic syndrome.
- MeSH
- cholesterol metabolismus MeSH
- hypertenze genetika metabolismus MeSH
- konzumní sacharóza metabolismus MeSH
- krysa rodu Rattus MeSH
- metabolický syndrom etiologie metabolismus patologie MeSH
- modely nemocí na zvířatech MeSH
- nutrigenomika metody MeSH
- potkani inbrední SHR MeSH
- protein promyelocytické leukemie s motivem zinkového prstu genetika metabolismus MeSH
- sladidla metabolismus MeSH
- těhotenství MeSH
- triglyceridy metabolismus MeSH
- zvířata kongenní MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol MeSH
- konzumní sacharóza MeSH
- protein promyelocytické leukemie s motivem zinkového prstu MeSH
- sladidla MeSH
- triglyceridy MeSH
- ZBTB16 protein, rat MeSH Prohlížeč
Maternal starvation coincident with preimplantation development has profound consequences for placental-fetal development, with various identified pathologies persisting/manifest in adulthood; the 'Developmental Origin of Health and Disease' (DOHaD) hypothesis/model. Despite evidence describing DOHaD-related incidence, supporting mechanistic and molecular data relating to preimplantation embryos themselves are comparatively meager. We recently identified the classically recognized stress-related p38-mitogen activated kinases (p38-MAPK) as regulating formation of the extraembryonic primitive endoderm (PrE) lineage within mouse blastocyst inner cell mass (ICM). Thus, we wanted to assay if PrE differentiation is sensitive to amino acid availability, in a manner regulated by p38-MAPK. Although blastocysts appropriately mature, without developmental/morphological or cell fate defects, irrespective of amino acid supplementation status, we found the extent of p38-MAPK inhibition induced phenotypes was more severe in the absence of amino acid supplementation. Specifically, both PrE and epiblast (EPI) ICM progenitor populations remained unspecified and there were fewer cells and smaller blastocyst cavities. Such phenotypes could be ameliorated, to resemble those observed in groups supplemented with amino acids, by addition of the anti-oxidant NAC (N-acetyl-cysteine), although PrE differentiation deficits remained. Therefore, p38-MAPK performs a hitherto unrecognized homeostatic early developmental regulatory role (in addition to direct specification of PrE), by buffering blastocyst cell number and ICM cell lineage specification (relating to EPI) in response to amino acid availability, partly by counteracting induced oxidative stress; with clear implications for the DOHaD model.
- Klíčová slova
- cell fate, developmental origin of health and disease (DOHaD), mouse blastocyst, oxidative stress, p38-mitogen activated kinases, primitive endoderm,
- Publikační typ
- časopisecké články MeSH