Nejvíce citovaný článek - PubMed ID 29730154
Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors
Inflammation is a hallmark of cancer. It contributes to a heterogeneous, hyperpermeable, and poorly perfused tumor vasculature, as well as to a dense and disorganized extracellular matrix, which together negatively affect drug delivery. Reasoning that glucocorticoids have pleiotropic effects, we use clinical-stage dexamethasone liposomes (LipoDex) to prime the tumor microenvironment for improved drug delivery and enhanced treatment efficacy. We show that LipoDex priming improves tumor vascular function and reduces extracellular matrix deposition. Single-cell sequencing corroborates LipoDex-mediated inhibition of pro-inflammatory, pro-angiogenic, and pro-fibrogenic gene expression in mononuclear cells, tumor-associated macrophages, and cancer-associated fibroblasts. Multimodal optical imaging illustrates that LipoDex pre-treatment increases the tumor accumulation and intratumoral distribution of subsequently administered polymeric and liposomal drug delivery systems. Using Doxil as a prototypic nanodrug, we finally show that LipoDex priming promotes antitumor treatment efficacy. Altogether, our findings demonstrate that desmoplastic tumors can be primed for improved drug targeting and therapy using clinical-stage glucocorticoid liposomes.
- Klíčová slova
- cancer-associated fibroblasts, corticosteroids, drug targeting, liposomes, nanomedicine, tumor microenvironment, tumor priming, tumor-associated macrophages,
- Publikační typ
- časopisecké články MeSH
The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score's effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.
- MeSH
- biologické markery metabolismus MeSH
- doxorubicin * terapeutické užití analogy a deriváty MeSH
- lidé MeSH
- makrofágy spojené s nádory metabolismus MeSH
- myši MeSH
- nádorové biomarkery metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory * patologie metabolismus farmakoterapie MeSH
- nanomedicína * metody MeSH
- polyethylenglykoly MeSH
- strojové učení MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- doxorubicin * MeSH
- liposomal doxorubicin MeSH Prohlížeč
- nádorové biomarkery MeSH
- polyethylenglykoly MeSH
Drug delivery to central nervous pathologies is compromised by the blood-brain barrier (BBB). A clinically explored strategy to promote drug delivery across the BBB is sonopermeation, which relies on the combined use of ultrasound (US) and microbubbles (MB) to induce temporally and spatially controlled opening of the BBB. We developed an advanced in vitro BBB model to study the impact of sonopermeation on the delivery of the prototypic polymeric drug carrier pHPMA as a larger molecule and the small molecule antiviral drug ribavirin. This was done under standard and under inflammatory conditions, employing both untargeted and RGD peptide-coated MB. The BBB model is based on human cerebral capillary endothelial cells and human placental pericytes, which are co-cultivated in transwell inserts and which present with proper transendothelial electrical resistance (TEER). Sonopermeation induced a significant decrease in TEER values and facilitated the trans-BBB delivery of fluorescently labeled pHPMA (Atto488-pHPMA). To study drug delivery under inflamed endothelial conditions, which are typical for e.g. tumors, neurodegenerative diseases and CNS infections, tumor necrosis factor (TNF) was employed to induce inflammation in the BBB model. RGD-coated MB bound to and permeabilized the inflamed endothelium-pericyte co-culture model, and potently improved Atto488-pHPMA and ribavirin delivery. Taken together, our work combines in vitro BBB bioengineering with MB-mediated drug delivery enhancement, thereby providing a framework for future studies on optimization of US-mediated drug delivery to the brain.
- Klíčová slova
- Blood-brain barrier, Drug delivery, Microbubbles, Sonopermeation, Ultrasound,
- MeSH
- antivirové látky aplikace a dávkování chemie farmakologie farmakokinetika MeSH
- endoteliální buňky * účinky léků metabolismus MeSH
- hematoencefalická bariéra * metabolismus MeSH
- kokultivační techniky * MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- mikrobubliny * MeSH
- oligopeptidy * chemie aplikace a dávkování farmakokinetika MeSH
- pericyty * metabolismus účinky léků MeSH
- polymery chemie aplikace a dávkování MeSH
- ribavirin aplikace a dávkování chemie farmakokinetika MeSH
- ultrazvukové vlny MeSH
- zánět farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
- arginyl-glycyl-aspartic acid MeSH Prohlížeč
- oligopeptidy * MeSH
- polymery MeSH
- ribavirin MeSH
Multidrug resistance (MDR) reduces the efficacy of chemotherapy. Besides inducing the expression of drug efflux pumps, chemotherapy treatment alters the composition of the tumor microenvironment (TME), thereby potentially limiting tumor-directed drug delivery. To study the impact of MDR signaling in cancer cells on TME remodeling and nanomedicine delivery, we generated multidrug-resistant 4T1 triple-negative breast cancer (TNBC) cells by exposing sensitive 4T1 cells to gradually increasing doxorubicin concentrations. In 2D and 3D cell cultures, resistant 4T1 cells are presented with a more mesenchymal phenotype and produced increased amounts of collagen. While sensitive and resistant 4T1 cells showed similar tumor growth kinetics in vivo, the TME of resistant tumors was enriched in collagen and fibronectin. Vascular perfusion was also significantly increased. Fluorophore-labeled polymeric (∼10 nm) and liposomal (∼100 nm) drug carriers were administered to mice with resistant and sensitive tumors. Their tumor accumulation and penetration were studied using multimodal and multiscale optical imaging. At the whole tumor level, polymers accumulate more efficiently in resistant than in sensitive tumors. For liposomes, the trend was similar, but the differences in tumor accumulation were insignificant. At the individual blood vessel level, both polymers and liposomes were less able to extravasate out of the vasculature and penetrate the interstitium in resistant tumors. In a final in vivo efficacy study, we observed a stronger inhibitory effect of cellular and microenvironmental MDR on liposomal doxorubicin performance than free doxorubicin. These results exemplify that besides classical cellular MDR, microenvironmental drug resistance features should be considered when aiming to target and treat multidrug-resistant tumors more efficiently.
- Klíčová slova
- Drug targeting, EPR effect, Multidrug resistance, Nanomedicine, Tumor microenvironment,
- MeSH
- chemorezistence MeSH
- doxorubicin MeSH
- lidé MeSH
- liposomy MeSH
- mnohočetná léková rezistence MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí MeSH
- nádory prsu * MeSH
- polymery farmakologie MeSH
- triple-negativní karcinom prsu * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- doxorubicin MeSH
- liposomy MeSH
- polymery MeSH
Rationale: The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. Sonopermeation, which relies on the combination of ultrasound and microbubbles, has emerged as a powerful tool to permeate the BBB, enabling the extravasation of drugs and drug delivery systems (DDS) to and into the central nervous system (CNS). When aiming to improve the treatment of high medical need brain disorders, it is important to systematically study nanomedicine translocation across the sonopermeated BBB. To this end, we here employed multimodal and multiscale optical imaging to investigate the impact of DDS size on brain accumulation, extravasation and penetration upon sonopermeation. Methods: Two prototypic DDS, i.e. 10 nm-sized pHPMA polymers and 100 nm-sized PEGylated liposomes, were labeled with fluorophores and intravenously injected in healthy CD-1 nude mice. Upon sonopermeation, computed tomography-fluorescence molecular tomography, fluorescence reflectance imaging, fluorescence microscopy, confocal microscopy and stimulated emission depletion nanoscopy were used to study the effect of DDS size on their translocation across the BBB. Results: Sonopermeation treatment enabled safe and efficient opening of the BBB, which was confirmed by staining extravasated endogenous IgG. No micro-hemorrhages, edema and necrosis were detected in H&E stainings. Multimodal and multiscale optical imaging showed that sonopermeation promoted the accumulation of nanocarriers in mouse brains, and that 10 nm-sized polymeric DDS accumulated more strongly and penetrated deeper into the brain than 100 nm-sized liposomes. Conclusions: BBB opening via sonopermeation enables safe and efficient delivery of nanomedicine formulations to and into the brain. When looking at accumulation and penetration (and when neglecting issues such as drug loading capacity and therapeutic efficacy) smaller-sized DDS are found to be more suitable for drug delivery across the BBB than larger-sized DDS. These findings are valuable for better understanding and further developing nanomedicine-based strategies for the treatment of CNS disorders.
- Klíčová slova
- Blood-brain barrier, Drug delivery, Microbubbles, Nanomedicine, Ultrasound,
- MeSH
- fluorescenční barviva aplikace a dávkování MeSH
- hematoencefalická bariéra diagnostické zobrazování metabolismus MeSH
- lékové transportní systémy metody MeSH
- liposomy aplikace a dávkování MeSH
- mikrobubliny MeSH
- mozek diagnostické zobrazování MeSH
- myši nahé MeSH
- myši MeSH
- nanomedicína metody MeSH
- nemoci mozku farmakoterapie MeSH
- optické zobrazování metody MeSH
- ultrasonografie metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorescenční barviva MeSH
- liposomy MeSH
Targeted drug delivery using nano-sized carrier systems with targeting functions to malignant and inflammatory tissue and tailored controlled drug release inside targeted tissues or cells has been and is still intensively studied. A detailed understanding of the correlation between the pharmacokinetic properties and structure of the nano-sized carrier is crucial for the successful transition of targeted drug delivery nanomedicines into clinical practice. In preclinical research in particular, fluorescence imaging has become one of the most commonly used powerful imaging tools. Increasing numbers of suitable fluorescent dyes that are excitable in the visible to near-infrared (NIR) wavelengths of the spectrum and the non-invasive nature of the method have significantly expanded the applicability of fluorescence imaging. This chapter summarizes non-invasive fluorescence-based imaging methods and discusses their potential advantages and limitations in the field of drug delivery, especially in anticancer therapy. This chapter focuses on fluorescent imaging from the cellular level up to the highly sophisticated three-dimensional imaging modality at a systemic level. Moreover, we describe the possibility for simultaneous treatment and imaging using fluorescence theranostics and the combination of different imaging techniques, e.g., fluorescence imaging with computed tomography.
- Klíčová slova
- drug delivery, fluorescence imaging, noninvasive imaging, polymers, theranostics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH