Nejvíce citovaný článek - PubMed ID 29974602
The role of adaptive strategies in plant naturalization
Elton's biotic resistance hypothesis posits that species-rich communities are more resistant to invasion. However, it remains unknown how species, phylogenetic and functional richness, along with environmental and human-impact factors, collectively affect plant invasion as alien species progress along the introduction-naturalization-invasion continuum. Using data from 12,056 local plant communities of the Czech Republic, this study reveals varying effects of these factors on the presence and richness of alien species at different invasion stages, highlighting the complexity of the invasion process. Specifically, we demonstrate that although species richness and functional richness of resident communities had mostly negative effects on alien species presence and richness, the strength and sometimes also direction of these effects varied along the continuum. Our study not only underscores that evidence for or against Elton's biotic resistance hypothesis may be stage-dependent but also suggests that other invasion hypotheses should be carefully revisited given their potential stage-dependent nature.
- MeSH
- biodiverzita * MeSH
- fylogeneze MeSH
- rostliny MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.
- MeSH
- biodiverzita MeSH
- délka genomu MeSH
- ekologie MeSH
- ekosystém * MeSH
- lidé MeSH
- rostliny genetika MeSH
- státní občanství * MeSH
- zavlečené druhy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- Formicidae * MeSH
- incidence MeSH
- savci MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges.
- Klíčová slova
- alien species, evolution, geographic distribution, invasion success, plant naturalization, range size,
- MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- rostliny * genetika MeSH
- zavlečené druhy MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIM: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION: Global. TIME PERIOD: Recent. MAJOR TAXA STUDIED: Trees. METHODS: We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS: In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS: Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.
- Klíčová slova
- abundance, dissimilarity, forest, functional traits, global, plant invasion, trees,
- Publikační typ
- časopisecké články MeSH
Among the traits whose relevance for plant invasions has recently been suggested are genome size (the amount of nuclear DNA) and ploidy level. So far, research on the role of genome size in invasiveness has been mostly based on indirect evidence by comparing species with different genome sizes, but how karyological traits influence competition at the intraspecific level remains unknown. We addressed these questions in a common-garden experiment evaluating the outcome of direct intraspecific competition among 20 populations of Phragmites australis, represented by clones collected in North America and Europe, and differing in their status (native and invasive), genome size (small and large), and ploidy levels (tetraploid, hexaploid, or octoploid). Each clone was planted in competition with one of the others in all possible combinations with three replicates in 45-L pots. Upon harvest, the identity of 21 shoots sampled per pot was revealed by flow cytometry and DNA analysis. Differences in performance were examined using relative proportions of shoots of each clone, ratios of their aboveground biomass, and relative yield total (RYT). The performance of the clones in competition primarily depended on the clone status (native vs. invasive). Measured in terms of shoot number or aboveground biomass, the strongest signal observed was that North American native clones always lost in competition to the other two groups. In addition, North American native clones were suppressed by European natives to a similar degree as by North American invasives. North American invasive clones had the largest average shoot biomass, but only by a limited, nonsignificant difference due to genome size. There was no effect of ploidy on competition. Since the North American invaders of European origin are able to outcompete the native North American clones, we suggest that their high competitiveness acts as an important driver in the early stages of their invasion.
- Klíčová slova
- Europe, North America, common reed, genome size, intraspecific competition, native populations, plant invasion, ploidy level,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Fruit heteromorphism is considered to be a bet-hedging strategy to cope with spatially or temporally heterogeneous environments. The different behaviours of the fruit morphs of the same species might also be beneficial during naturalization, once the species has been introduced to a new range. Yet, no study to date has tested the association between fruit heteromorphism and global-scale naturalization success for a large set of plant species. METHODS: We compiled two large datasets on fruit heteromorphism in Asteraceae. One dataset was on native species in Central Europe (n = 321) and the other was on species frequently planted as ornamentals (n = 584). Using phylogenetic linear and logistic regressions, we tested whether heteromorphic species are more likely to naturalize outside their native range, and in more regions of the world than monomorphic species. We also tested whether the effect of heteromorphism is modulated by life history and height of the species. KEY RESULTS: We show that heteromorphic species were more likely to naturalize outside their native range. However, among the naturalized species, heteromorphic and monomorphic species did not differ in the number of world regions where they became naturalized. A short life span and tall stature both promoted naturalization success and, when life history and height were included in the models, the effect of fruit heteromorphism on the ability to naturalize became non-significant. Nevertheless, among tall plants, heteromorphic ornamental species were significantly more likely to become naturalized in general and in more regions than monomorphic species. CONCLUSIONS: Our results provide evidence that in Asteraceae the production of heteromorphic fruits is associated with naturalization success. It appears, however, that not fruit heteromorphism per se, but a successful combination of other biological traits in fruit heteromorphic species, namely short life span and tall stature, contributes to their naturalization success.
- Klíčová slova
- Alien species, Asteraceae, Compositae, dispersal, fruit heteromorphism, heterocarpy, invasiveness, monocarpy, naturalization, non-native species, seed heteromorphism,
- MeSH
- Asteraceae * MeSH
- ekosystém MeSH
- fylogeneze MeSH
- ovoce * MeSH
- zavlečené druhy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH