Nejvíce citovaný článek - PubMed ID 30859819
Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance
Additives in vaping products, such as flavors, preservatives, or thickening agents, are commonly used to enhance user experience. Among these, Vitamin E acetate (VEA) was initially thought to be harmless but has been implicated as the primary cause of e-cigarette or vaping product use-associated lung injury, a serious lung disease. In our study, VEA serves as a proxy for other e-cigarette additives. To explore its harmful effects, we developed an exposure system to subject a pulmonary surfactant (PSurf) model to VEA-rich vapor. Through detailed analysis and atomic-level simulations, we found that VEA tends to cluster into aggregates on the PSurf surface, inducing deformations and weakening its essential elastic properties, critical for respiratory cycle function. Apart from VEA, our experiments also indicate that propylene glycol and vegetable glycerin, widely used in e-liquid mixtures, or their thermal decomposition products, alter surfactant properties. This research provides molecular-level insights into the detrimental impacts of vaping product additives on lung health.
- Klíčová slova
- EVALI, Lung surfactant, Molecular dynamics simulation, Pulmonary surfactant, Vaping-associated pulmonary injury,
- MeSH
- acetáty analýza chemie MeSH
- biologické modely MeSH
- lidé MeSH
- plicní surfaktanty * chemie MeSH
- propylenglykol chemie MeSH
- systémy dodávající nikotin elektronicky * MeSH
- vaping * škodlivé účinky MeSH
- vitamin E * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetáty MeSH
- plicní surfaktanty * MeSH
- propylenglykol MeSH
- vitamin E * MeSH
Curved cellular membranes are both abundant and functionally relevant. While novel tomography approaches reveal the structural details of curved membranes, their dynamics pose an experimental challenge. Curvature especially affects the diffusion of lipids and macromolecules, yet neither experiments nor continuum models distinguish geometric effects from those caused by curvature-induced changes in membrane properties. Molecular simulations could excel here, yet despite community interest toward curved membranes, tools for their analysis are still lacking. Here, we satisfy this demand by introducing CurD, our novel and openly available implementation of the Vertex-oriented Triangle Propagation algorithm to the study of lipid diffusion along membranes with mean and/or Gaussian curvature. This approach, aided by our highly optimized implementation, computes geodetic distances significantly faster than conventional implementations of path-finding algorithms. Our tool, applied to coarse-grained simulations, allows for the first time the analysis of curvature effects on diffusion at size scales relevant to physiological processes such as endocytosis. Our analyses with different membrane geometries reveal that Gaussian curvature plays a surprisingly small role on lipid motion, whereas mean curvature; i.e., the packing of lipid headgroups largely dictates their mobility.
- Publikační typ
- časopisecké články MeSH
Mammalian and Drosophila melanogaster model mitochondrial membrane compositions are constructed from experimental data. Simplified compositions for inner and outer mitochondrial membranes are provided, including an asymmetric inner mitochondrial membrane. We performed atomistic molecular dynamics simulations of these membranes and computed their material properties. When comparing these properties to those obtained by extrapolation from their constituting lipids, we find good overall agreement. Finally, we analyzed the curvature effect of cardiolipin, considering ion concentration effects, oxidation, and pH. We draw the conclusion that cardiolipin-negative curvature is most likely due to counterion effects, such as cation adsorption, in particular of H3O+. This oft-neglected effect might account for the puzzling behavior of this lipid.
- MeSH
- Drosophila melanogaster MeSH
- kardiolipiny * chemie MeSH
- mitochondriální membrány * MeSH
- savci MeSH
- simulace molekulární dynamiky MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kardiolipiny * MeSH
The routinely employed periodic boundary conditions complicate molecular simulations of physiologically relevant asymmetric lipid membranes together with their distinct solvent environments. Therefore, separating the extracellular fluid from its cytosolic counterpart has often been performed using a costly double-bilayer setup. Here, we demonstrate that the lipid membrane and solvent asymmetry can be efficiently modeled with a single lipid bilayer by applying an inverted flat-bottom potential to ions and other solute molecules, thereby restraining them to only interact with the relevant leaflet. We carefully optimized the parameters of the suggested method so that the results obtained using the flat-bottom and double-bilayer approaches become mutually indistinguishable. Then, we apply the flat-bottom approach to lipid bilayers with various compositions and solvent environments, covering ions and cationic peptides to validate the approach in a realistic use case. We also discuss the possible limitations of the method as well as its computational efficiency and provide a step-by-step guide on how to set up such simulations in a straightforward manner.
- MeSH
- lipidové dvojvrstvy * chemie MeSH
- rozpouštědla MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidové dvojvrstvy * MeSH
- rozpouštědla MeSH
Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol. Here, we define quantitative quality measures for simulations of binary lipid mixtures in membranes against the C-H bond order parameters and lateral diffusion coefficients from NMR spectroscopy as well as the form factors from X-ray scattering. Based on these measures, we perform a systematic evaluation of the ability of commonly used force fields to describe the structure and dynamics of binary mixtures of palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. None of the tested force fields clearly outperforms the others across the tested properties and conditions. Still, the Slipids parameters provide the best overall performance in our tests, especially when dynamic properties are included in the evaluation. The quality evaluation metrics introduced in this work will, particularly, foster future force field development and refinement for multicomponent membranes using automated approaches.
- MeSH
- cholesterol chemie MeSH
- fosfatidylcholiny * chemie MeSH
- lipidové dvojvrstvy * chemie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-palmitoyl-2-oleoylphosphatidylcholine MeSH Prohlížeč
- cholesterol MeSH
- fosfatidylcholiny * MeSH
- lipidové dvojvrstvy * MeSH
The lining of the alveoli is covered by pulmonary surfactant, a complex mixture of surface-active lipids and proteins that enables efficient gas exchange between inhaled air and the circulation. Despite decades of advancements in the study of the pulmonary surfactant, the molecular scale behavior of the surfactant and the inherent role of the number of different lipids and proteins in surfactant behavior are not fully understood. The most important proteins in this complex system are the surfactant proteins SP-B and SP-C. Given this, in this work we performed nonequilibrium all-atom molecular dynamics simulations to study the interplay of SP-B and SP-C with multicomponent lipid monolayers mimicking the pulmonary surfactant in composition. The simulations were complemented by z-scan fluorescence correlation spectroscopy and atomic force microscopy measurements. Our state-of-the-art simulation model reproduces experimental pressure-area isotherms and lateral diffusion coefficients. In agreement with previous research, the inclusion of either SP-B and SP-C increases surface pressure, and our simulations provide a molecular scale explanation for this effect: The proteins display preferential lipid interactions with phosphatidylglycerol, they reside predominantly in the lipid acyl chain region, and they partition into the liquid expanded phase or even induce it in an otherwise packed monolayer. The latter effect is also visible in our atomic force microscopy images. The research done contributes to a better understanding of the roles of specific lipids and proteins in surfactant function, thus helping to develop better synthetic products for surfactant replacement therapy used in the treatment of many fatal lung-related injuries and diseases.
- MeSH
- biofyzikální jevy MeSH
- fosfolipidy chemie MeSH
- plicní surfaktanty * chemie MeSH
- povrchově aktivní látky MeSH
- povrchové vlastnosti MeSH
- protein B asociovaný s plicním surfaktantem chemie MeSH
- protein C asociovaný s plicním surfaktantem chemie MeSH
- proteiny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfolipidy MeSH
- plicní surfaktanty * MeSH
- povrchově aktivní látky MeSH
- protein B asociovaný s plicním surfaktantem MeSH
- protein C asociovaný s plicním surfaktantem MeSH
- proteiny MeSH
FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2.
- MeSH
- buněčná membrána metabolismus MeSH
- cholesterol * metabolismus MeSH
- fibroblastový růstový faktor 2 * metabolismus MeSH
- fosfatidylinositol-4,5-difosfát * metabolismus MeSH
- lipidové dvojvrstvy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol * MeSH
- fibroblastový růstový faktor 2 * MeSH
- fosfatidylinositol-4,5-difosfát * MeSH
- lipidové dvojvrstvy * MeSH
Pulmonary surfactant is a complex mixture of lipids and proteins lining the interior of the alveoli, and constitutes the first barrier to both oxygen and pathogens as they progress toward blood circulation. Despite decades of study, the behavior of the pulmonary surfactant at the molecular scale is poorly understood, which hinders the development of effective surfactant replacement therapies, useful in the treatment of several lung-related diseases. In this work, we combined all-atom molecular dynamics simulations, Langmuir trough measurements, and AFM imaging to study synthetic four-component lipid monolayers designed to model protein-free pulmonary surfactant. We characterized the structural and dynamic properties of the monolayers with a special focus on lateral heterogeneity. Remarkably, simulations reproduce almost quantitatively the experimental data on pressure-area isotherms and the presence of lateral heterogeneities highlighted by AFM. Quite surprisingly, the pressure-area isotherms do not show a plateau region, despite the presence of liquid-condensed nanometer-sized domains at surface pressures larger than 20 mN/m. In the simulations, the liquid-condensed domains were small and transient, but they did not coalesce to yield a separate phase. They were only slightly enriched in DPPC and cholesterol, and their chemical composition remained very similar to the overall composition of the monolayer membrane. Instead, they differed from liquid-expanded regions in terms of membrane thickness (in agreement with AFM data), diffusion rates, as well as acyl chain packing and orientation. We hypothesize that such lateral heterogeneities are crucial for lung surfactant function, as they allow both efficient packing, to achieve low surface tension, and sufficient fluidity, critical for rapid adsorption to the air-liquid interface during the breathing cycle.
- Klíčová slova
- atomic force microscopy, heterogeneity, lipid monolayer, membrane domain, molecular dynamics simulation, pressure-area isotherm, pulmonary surfactant,
- Publikační typ
- časopisecké články MeSH
The fluorescent molecule diphenylhexatriene (DPH) has been often used in combination with fluorescence anisotropy measurements, yet little is known regarding the non-linear optical properties. In the current work, we focus on them and extend the application to fluorescence, while paying attention to the conformational versatility of DPH when it is embedded in different membrane phases. Extensive hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the influence of the phase- and temperature-dependent lipid environment on the probe. Already, the transition dipole moments and one-photon absorption spectra obtained in the liquid ordered mixture of sphingomyelin (SM)-cholesterol (Chol) (2:1) differ largely from the ones calculated in the liquid disordered DOPC and solid gel DPPC membranes. Throughout the work, the molecular conformation in SM:Chol is found to differ from the other environments. The two-photon absorption spectra and the ones obtained by hyper-Rayleigh scattering depend strongly on the environment. Finally, a stringent comparison of the fluorescence anisotropy decay and the fluorescence lifetime confirm the use of DPH to gain information upon the surrounding lipids and lipid phases. DPH might thus open the possibility to detect and analyze different biological environments based on its absorption and emission properties.
- Klíčová slova
- QM/MM, absorption, conformationally versatile molecules, fluorescence anisotropy, fluorescence decay, hyper-Rayleigh scattering, photoselection, two-photon absorption,
- MeSH
- cholesterol chemie MeSH
- difenylhexatrien chemie MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční polarizace MeSH
- lipidové dvojvrstvy chemie MeSH
- molekulární konformace MeSH
- sfingomyeliny chemie MeSH
- simulace molekulární dynamiky MeSH
- tranzitní teplota MeSH
- vztahy mezi strukturou a aktivitou MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol MeSH
- difenylhexatrien MeSH
- fluorescenční barviva MeSH
- lipidové dvojvrstvy MeSH
- sfingomyeliny MeSH
Cholesterol renders mammalian cell membranes more compact by reducing the amount of voids in the membrane structure. Because of this, cholesterol is known to regulate the ability of cell membranes to prevent the permeation of water and water-soluble molecules through the membranes. Meanwhile, it is also known that even seemingly tiny modifications in the chemical structure of cholesterol can lead to notable changes in membrane properties. The question is, how significantly do these small changes in cholesterol structure affect the permeability barrier function of cell membranes? In this work, we applied fluorescence methods as well as atomistic molecular dynamics simulations to characterize changes in lipid membrane permeability induced by cholesterol oxidation. The studied 7β-hydroxycholesterol (7β-OH-chol) and 27-hydroxycholesterol (27-OH-chol) represent two distinct groups of oxysterols, namely, ring- and tail-oxidized cholesterols, respectively. Our previous research showed that the oxidation of the cholesterol tail has only a marginal effect on the structure of a lipid bilayer; however, oxidation was found to disturb membrane dynamics by introducing a mechanism that allows sterol molecules to move rapidly back and forth across the membrane-bobbing. Herein, we show that bobbing of 27-OH-chol accelerates fluorescence quenching of NBD-lipid probes in the inner leaflet of liposomes by dithionite added to the liposomal suspension. Systematic experiments using fluorescence quenching spectroscopy and microscopy led to the conclusion that the presence of 27-OH-chol increases membrane permeability to the dithionite anion. Atomistic molecular dynamics simulations demonstrated that 27-OH-chol also facilitates water transport across the membrane. The results support the view that oxysterol bobbing gives rise to successive perturbations to the hydrophobic core of the membrane, and these perturbations promote the permeation of water and small water-soluble molecules through a lipid bilayer. The observed impairment of permeability can have important consequences for eukaryotic organisms. The effects described for 27-OH-chol were not observed for 7β-OH-chol which represents ring-oxidized sterols.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH