Most cited article - PubMed ID 30934674
Novel Benzene-Based Carbamates for AChE/BChE Inhibition: Synthesis and Ligand/Structure-Oriented SAR Study
A series of seventeen 4-chlorocinnamanilides and seventeen 3,4-dichlorocinnamanilides were characterized for their antiplasmodial activity. In vitro screening on a chloroquine-sensitive strain of Plasmodium falciparum 3D7/MRA-102 highlighted that 23 compounds possessed IC50 < 30 µM. Typically, 3,4-dichlorocinnamanilides showed a broader range of activity compared to 4-chlorocinnamanilides. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-en-amide with IC50 = 1.6 µM was the most effective agent, while the other eight most active derivatives showed IC50 in the range from 1.8 to 4.6 µM. A good correlation between the experimental logk and the estimated clogP was recorded for the whole ensemble of the lipophilicity generators. Moreover, the SAR-mediated similarity assessment of the novel (di)chlorinated N-arylcinnamamides was conducted using the collaborative (hybrid) ligand-based and structure-related protocols. In consequence, an 'averaged' selection-driven interaction pattern was produced based in namely 'pseudo-consensus' 3D pharmacophore mapping. The molecular docking approach was engaged for the most potent antiplasmodial agents in order to gain an insight into the arginase-inhibitor binding mode. The docking study revealed that (di)chlorinated aromatic (C-phenyl) rings are oriented towards the binuclear manganese cluster in the energetically favorable poses of the chloroquine and the most potent arginase inhibitors. Additionally, the water-mediated hydrogen bonds were formed via carbonyl function present in the new N-arylcinnamamides and the fluorine substituent (alone or in trifluoromethyl group) of N-phenyl ring seems to play a key role in forming the halogen bonds.
- Keywords
- CoMSA, arginase inhibition, arylcinnamamides, lipophilicity, molecular docking, similarity-activity landscape index,
- MeSH
- Antimalarials * pharmacology MeSH
- Arginase pharmacology MeSH
- Chloroquine pharmacology MeSH
- Plasmodium falciparum MeSH
- Molecular Docking Simulation MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antimalarials * MeSH
- Arginase MeSH
- Chloroquine MeSH
The knowledge of interactions between different molecules is undoubtedly the driving force of all contemporary biomedical and biological sciences. Chemical biology/biological chemistry has become an important multidisciplinary bridge connecting the perspectives of chemistry and biology to the study of small molecules/peptidomimetics and their interactions in biological systems. Advances in structural biology research, in particular linking atomic structure to molecular properties and cellular context, are essential for the sophisticated design of new medicines that exhibit a high degree of druggability and very importantly, druglikeness. The authors of this contribution are outstanding scientists in the field who provided a brief overview of their work, which is arranged from in silico investigation through the characterization of interactions of compounds with biomolecules to bioactive materials.
A series of new tertiary phenothiazine derivatives containing a quinoline and a pyridine fragment was synthesized by the reaction of 1-methyl-3-benzoylthio-4-butylthioquinolinium chloride with 3-aminopyridine derivatives bearing various substituents on the pyridine ring. The direction and mechanism of the cyclization reaction of intermediates with the structure of 1-methyl-4-(3-pyridyl)aminoquinolinium-3-thiolate was related to the substituents in the 2- and 4-pyridine position. The structures of the compounds were analyzed using 1H, 13C NMR (COSY, HSQC, HMBC) and X-ray analysis, respectively. Moreover, the antiproliferative activity against tumor cells (A549, T47D, SNB-19) and a normal cell line (NHDF) was tested. The antibacterial screening of all the compounds was conducted against the reference and quality control strain Staphylococcus aureus ATCC 29213, three clinical isolates of methicillin-resistant S. aureus (MRSA). In silico computation of the intermolecular similarity was performed using principal component analysis (PCA) and hierarchical clustering analysis (HCA) on the pool of structure/property-related descriptors calculated for the novel tetracyclic diazaphenothiazine derivatives. The distance-oriented property evaluation was correlated with the experimental anticancer activities and empirical lipophilicity as well. The quantitative shape-based comparison was conducted using the CoMSA method in order to indicate the potentially valid steric, electronic and lipophilic properties. Finally, the numerical sampling of similarity-related activity landscape (SALI) provided a subtle picture of the SAR trends.
- Keywords
- antibacterial activity, antiproliferative activity, azaphenothiazines, lipophilicity, pharmacophore mapping, phenothiazine, similarity-activity landscape index,
- MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Phenothiazines chemistry MeSH
- Heterocyclic Compounds chemistry MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Tumor Cells, Cultured MeSH
- Neoplasms drug therapy MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Staphylococcus aureus drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Phenothiazines MeSH
- Heterocyclic Compounds MeSH
- Antineoplastic Agents MeSH
A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared by multi-step synthesis and characterized. All the final compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity index (SI) was determined. Except for three compounds, all compounds showed strong preferential inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine. Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k), benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate (5c) showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM, respectively), indicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine. In addition, the selectivity index of 5c and 5j was approx. 10 and that of 5k was even 34. The process of carbamylation and reactivation of BChE was studied for the most active derivatives 5k, 5j. The detailed information about the mode of binding of these compounds to the active site of both BChE and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking, molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations) were employed.
- Keywords
- bioassays, carbamates, cholinesterase inhibitors, molecular modeling, sulfonamides, synthesis,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Butyrylcholinesterase metabolism MeSH
- Cholinesterase Inhibitors chemistry MeSH
- Carbamates chemical synthesis chemistry MeSH
- Catalytic Domain MeSH
- Humans MeSH
- Molecular Dynamics Simulation MeSH
- Molecular Docking Simulation MeSH
- Sulfonamides chemical synthesis chemistry MeSH
- Binding Sites MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- BCHE protein, human MeSH Browser
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Carbamates MeSH
- Sulfonamides MeSH
A library of novel 4-{[(benzyloxy)carbonyl]amino}-2-hydroxybenzoic acid amides was designed and synthesized in order to provide potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors; the in vitro inhibitory profile and selectivity index were specified. Benzyl (3-hydroxy-4-{[2-(trifluoromethoxy)phenyl]carbamoyl}phenyl)carbamate was the best AChE inhibitor with the inhibitory concentration of IC50 = 36.05 µM in the series, while benzyl {3-hydroxy-4-[(2-methoxyphenyl)carbamoyl]phenyl}-carbamate was the most potent BChE inhibitor (IC50 = 22.23 µM) with the highest selectivity for BChE (SI = 2.26). The cytotoxic effect was evaluated in vitro for promising AChE/BChE inhibitors. The newly synthesized adducts were subjected to the quantitative shape comparison with the generation of an averaged pharmacophore pattern. Noticeably, three pairs of fairly similar fluorine/bromine-containing compounds can potentially form the activity cliff that is manifested formally by high structure-activity landscape index (SALI) numerical values. The molecular docking study was conducted for the most potent AChE/BChE inhibitors, indicating that the hydrophobic interactions were overwhelmingly generated with Gln119, Asp70, Pro285, Thr120, and Trp82 aminoacid residues, while the hydrogen bond (HB)-donor ones were dominated with Thr120. π-stacking interactions were specified with the Trp82 aminoacid residue of chain A as well. Finally, the stability of chosen liganded enzymatic systems was assessed using the molecular dynamic simulations. An attempt was made to explain the noted differences of the selectivity index for the most potent molecules, especially those bearing unsubstituted and fluorinated methoxy group.
- Keywords
- 4-aminosalicylanilides, CoMSA, carbamate synthesis, cholinesterase inhibition, lipophilicity, molecular docking, similarity-activity landscape index,
- MeSH
- Acetylcholinesterase chemistry metabolism MeSH
- Principal Component Analysis MeSH
- Butyrylcholinesterase chemistry metabolism MeSH
- Cholinesterase Inhibitors chemical synthesis chemistry MeSH
- Inhibitory Concentration 50 MeSH
- Carbamates pharmacology MeSH
- Aminosalicylic Acid chemistry MeSH
- Humans MeSH
- Ligands MeSH
- Models, Molecular MeSH
- Cell Line, Tumor MeSH
- Drug Design MeSH
- Solvents MeSH
- Cluster Analysis MeSH
- Molecular Dynamics Simulation MeSH
- Molecular Docking Simulation * MeSH
- THP-1 Cells MeSH
- Cell Survival MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Carbamates MeSH
- Aminosalicylic Acid MeSH
- Ligands MeSH
- Solvents MeSH
A series of nineteen novel ring-substituted N-arylcinnamanilides was synthesized and characterized. All investigated compounds were tested against Staphylococcus aureus as the reference strain, two clinical isolates of methicillin-resistant S. aureus (MRSA), and Mycobacterium tuberculosis. (2E)-N-[3-Fluoro-4-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide showed even better activity (minimum inhibitory concentration (MIC) 25.9 and 12.9 µM) against MRSA isolates than the commonly used ampicillin (MIC 45.8 µM). The screening of the cell viability was performed using THP1-Blue™ NF-κB cells and, except for (2E)-N-(4-bromo-3-chlorophenyl)-3-phenylprop-2-enamide (IC50 6.5 µM), none of the discussed compounds showed any significant cytotoxic effect up to 20 μM. Moreover, all compounds were tested for their anti-inflammatory potential; several compounds attenuated the lipopolysaccharide-induced NF-κB activation and were more potent than the parental cinnamic acid. The lipophilicity values were specified experimentally as well. In addition, in silico approximation of the lipophilicity values was performed employing a set of free/commercial clogP estimators, corrected afterwards by the corresponding pKa calculated at physiological pH and subsequently cross-compared with the experimental parameters. The similarity-driven property space evaluation of structural analogs was carried out using the principal component analysis, Tanimoto metrics, and Kohonen mapping.
- Keywords
- IVE-PLS, MTT assay, PCA, antistaphylococcal activity, cinnamamides, cytotoxicity, lipophilicity, quantitative structure-property relationships, synthesis,
- MeSH
- Ampicillin pharmacology MeSH
- Principal Component Analysis MeSH
- Anti-Inflammatory Agents pharmacology MeSH
- Cinnamates chemical synthesis MeSH
- Inhibitory Concentration 50 MeSH
- Hydrogen-Ion Concentration MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects MeSH
- Microbial Sensitivity Tests MeSH
- Microwaves MeSH
- Models, Molecular MeSH
- Mycobacterium tuberculosis drug effects MeSH
- NF-kappa B metabolism MeSH
- Staphylococcus aureus drug effects MeSH
- THP-1 Cells MeSH
- Cell Survival drug effects MeSH
- Structure-Activity Relationship MeSH
- Inflammation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ampicillin MeSH
- Anti-Inflammatory Agents MeSH
- cinnamamide MeSH Browser
- Cinnamates MeSH
- NF-kappa B MeSH
A set of 25 novel, silicon-based carbamate derivatives as potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors was synthesized and characterized by their in vitro inhibition profiles and the selectivity indexes (SIs). The prepared compounds were also tested for their inhibition potential on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. In fact, some of the newly prepared molecules revealed comparable or even better inhibitory activities compared to the marketed drugs (rivastigmine or galanthamine) and commercially applied pesticide Diuron®, respectively. Generally, most compounds exhibited better inhibition potency towards AChE; however, a wider activity span was observed for BChE. Notably, benzyl N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(2-hydroxyphenyl)carbamoyl]ethyl]-carbamate (2) and benzyl N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(3-hydroxyphenyl)carbamoyl]ethyl]-carbamate (3) were characterized by fairly high selective indexes. Specifically, compound 2 was prescribed with the lowest IC50 value that corresponds quite well with galanthamine inhibition activity, while the inhibitory profiles of molecules 3 and benzyl-N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(4-hydroxyphenyl)carbamoyl]ethyl]carbamate (4) are in line with rivastigmine activity. Moreover, a structure-activity relationship (SAR)-driven similarity evaluation of the physicochemical properties for the carbamates examined appeared to have foreseen the activity cliffs using a similarity-activity landscape index for BChE inhibitory response values. The 'indirect' ligand-based and 'direct' protein-mediated in silico approaches were applied to specify electronic/steric/lipophilic factors that are potentially valid for quantitative (Q)SAR modeling of the carbamate analogues. The stochastic model validation was used to generate an 'average' 3D-QSAR pharmacophore pattern. Finally, the target-oriented molecular docking was employed to (re)arrange the spatial distribution of the ligand property space for BChE and photosystem II (PSII).
- Keywords
- CoMSA, IVE-PLS, in vitro cholinesterase inhibition, molecular docking, silicon-based carbamates, similarity-activity landscape index,
- MeSH
- Butyrylcholinesterase MeSH
- Chloroplasts MeSH
- Cholinesterase Inhibitors chemistry pharmacology MeSH
- Photosystem II Protein Complex MeSH
- Inhibitory Concentration 50 MeSH
- Carbamates chemistry pharmacology MeSH
- Silicon chemistry MeSH
- Humans MeSH
- Ligands MeSH
- Molecular Docking Simulation MeSH
- Spinacia oleracea MeSH
- THP-1 Cells drug effects MeSH
- Electron Transport drug effects MeSH
- Binding Sites MeSH
- Cell Survival drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Photosystem II Protein Complex MeSH
- Carbamates MeSH
- Silicon MeSH
- Ligands MeSH