Nejvíce citovaný článek - PubMed ID 31070086
Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy
T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.
- Klíčová slova
- Calcium channels, Channelosome, Ion channels, T-type channels,
- MeSH
- blokátory kalciových kanálů MeSH
- neurony metabolismus MeSH
- vápník * metabolismus MeSH
- vápníkové kanály - typ T * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- blokátory kalciových kanálů MeSH
- vápník * MeSH
- vápníkové kanály - typ T * MeSH
T-type calcium channelopathies encompass a group of human disorders either caused or exacerbated by mutations in the genes encoding different T-type calcium channels. Recently, a new heterozygous missense mutation in the CACNA1H gene that encodes the Cav3.2 T-type calcium channel was reported in a patient presenting with epilepsy and hearing loss-apparently the first CACNA1H mutation to be associated with a sensorineural hearing condition. This mutation leads to the substitution of an arginine at position 132 with a histidine (R132H) in the proximal extracellular end of the second transmembrane helix of Cav3.2. In this study, we report the electrophysiological characterization of this new variant using whole-cell patch clamp recordings in tsA-201 cells. Our data reveal minor gating alterations of the channel evidenced by a mild increase of the T-type current density and slower recovery from inactivation, as well as an enhanced sensitivity of the channel to external pH change. To what extend these biophysical changes and pH sensitivity alterations induced by the R132H mutation contribute to the observed pathogenicity remains an open question that will necessitate the analysis of additional CACNA1H variants associated with the same pathologies.
- Klíčová slova
- CACNA1H, Calcium channels, Cav3.2, Channelopathy, Epilepsy, Hearing, Ion channels, Mutation, T-type channels,
- MeSH
- epilepsie * genetika MeSH
- lidé MeSH
- missense mutace genetika MeSH
- mutace genetika MeSH
- nedoslýchavost * MeSH
- vápníkové kanály MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vápníkové kanály MeSH
Trigeminal neuralgia (TN) is a rare form of chronic neuropathic pain characterized by spontaneous or elicited paroxysms of electric shock-like or stabbing pain in a region of the face. While most cases occur in a sporadic manner and are accompanied by intracranial vascular compression of the trigeminal nerve root, alteration of ion channels has emerged as a potential exacerbating factor. Recently, whole exome sequencing analysis of familial TN patients identified 19 rare variants in the gene CACNA1H encoding for Cav3.2T-type calcium channels. An initial analysis of 4 of these variants pointed to a pathogenic role. In this study, we assessed the electrophysiological properties of 13 additional TN-associated Cav3.2 variants expressed in tsA-201 cells. Our data indicate that 6 out of the 13 variants analyzed display alteration of their gating properties as evidenced by a hyperpolarizing shift of their voltage dependence of activation and/or inactivation resulting in an enhanced window current supported by Cav3.2 channels. An additional variant enhanced the recovery from inactivation. Simulation of neuronal electrical membrane potential using a computational model of reticular thalamic neuron suggests that TN-associated Cav3.2 variants could enhance neuronal excitability. Altogether, the present study adds to the notion that ion channel polymorphisms could contribute to the etiology of some cases of TN and further support a role for Cav3.2 channels.
- Klíčová slova
- CACNA1H, Calcium channel, Cav3.2 channel, Channelopathy, Ion channel, Trigeminal neuralgia,
- MeSH
- elektrofyziologické jevy MeSH
- lidé MeSH
- membránové potenciály MeSH
- neuralgie trigeminu * genetika MeSH
- neurony MeSH
- vápníkové kanály MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CACNA1H protein, human MeSH Prohlížeč
- vápníkové kanály MeSH
Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies that are characterized by seizures and developmental delay. DEEs are primarily attributed to genetic causes and an increasing number of cases have been correlated with variants in ion channel genes. In this study, we report a child with an early severe DEE. Whole exome sequencing showed a de novo heterozygous variant (c.4873-4881 duplication) in the SCN8A gene and an inherited heterozygous variant (c.952G > A) in the CACNA1H gene encoding for Nav1.6 voltage-gated sodium and Cav3.2 voltage-gated calcium channels, respectively. In vitro functional analysis of human Nav1.6 and Cav3.2 channel variants revealed mild but significant alterations of their gating properties that were in general consistent with a gain- and loss-of-channel function, respectively. Although additional studies will be required to confirm the actual pathogenic involvement of SCN8A and CACNA1H, these findings add to the notion that rare ion channel variants may contribute to the etiology of DEEs.
- Klíčová slova
- CACNA1H, Calcium channel, Cav3.2 channel, Channelopathy, Encephalopathy, Epilepsy, Ion channels, Nav1.6 channel, SCN8A, Sodium channel,
- MeSH
- aktivační mutace MeSH
- bodová mutace MeSH
- duplikace genu MeSH
- epilepsie tonicko-klonická genetika MeSH
- gating iontového kanálu genetika fyziologie MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- missense mutace MeSH
- mnohočetné abnormality genetika MeSH
- napěťově řízený sodíkový kanál, typ 6 genetika fyziologie MeSH
- novorozenec MeSH
- refrakterní epilepsie genetika MeSH
- rodokmen MeSH
- skolióza genetika MeSH
- vápníkové kanály - typ T genetika fyziologie MeSH
- vývojové poruchy u dětí genetika MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CACNA1H protein, human MeSH Prohlížeč
- napěťově řízený sodíkový kanál, typ 6 MeSH
- SCN8A protein, human MeSH Prohlížeč
- vápníkové kanály - typ T MeSH
Cav3.2 T-type calcium channels play an essential role in the transmission of peripheral nociception in the dorsal root ganglia (DRG) and alteration of Cav3.2 expression is associated with the development of peripheral painful diabetic neuropathy (PDN). Several studies have previously documented the role of glycosylation in the expression and functioning of Cav3.2 and suggested that altered glycosylation of the channel may contribute to the aberrant expression of the channel in diabetic conditions. In this study, we aimed to analyze the expression of glycan-processing genes in DRG neurons from a leptin-deficient genetic mouse model of diabetes (db/db). Transcriptomic analysis revealed that several glycan-processing genes encoding for glycosyltransferases and sialic acid-modifying enzymes were upregulated in diabetic conditions. Functional analysis of these enzymes on recombinant Cav3.2 revealed an unexpected loss-of-function of the channel. Collectively, our data indicate that diabetes is associated with an alteration of the glycosylation machinery in DRG neurons. However, individual action of these enzymes when tested on recombinant Cav3.2 cannot explain the observed upregulation of T-type channels under diabetic conditions.Abbreviations: Galnt16: Polypeptide N-acetylgalactosaminyltransferase 16; B3gnt8: UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 8; B4galt1: Beta-1,4-galactosyltransferase 1; St6gal1: Beta-galactoside alpha-2,6-sialyltransferase 1; Neu3: Sialidase-3.
- Klíčová slova
- Cav3.2 channel, DRG neurons, Glycosylation, T-type channel, calcium channel, diabetes, transcriptome,
- MeSH
- buněčné linie MeSH
- elektrofyziologie metody MeSH
- experimentální diabetes mellitus metabolismus MeSH
- glykosylace MeSH
- lidé MeSH
- myši MeSH
- polysacharidy metabolismus MeSH
- spinální ganglia metabolismus MeSH
- transkriptom genetika MeSH
- vápníkové kanály - typ T genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Cacna1h protein, mouse MeSH Prohlížeč
- polysacharidy MeSH
- vápníkové kanály - typ T MeSH
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of cortical, brain stem and spinal motor neurons that leads to muscle weakness and death. A previous study implicated CACNA1H encoding for Cav3.2 calcium channels as a susceptibility gene in ALS. In the present study, two heterozygous CACNA1H variants were identified by whole genome sequencing in a small cohort of ALS patients. These variants were functionally characterized using patch clamp electrophysiology, biochemistry assays, and molecular modeling. A previously unreported c.454GTAC > G variant produced an inframe deletion of a highly conserved isoleucine residue in Cav3.2 (p.ΔI153) and caused a complete loss-of-function of the channel, with an additional dominant-negative effect on the wild-type channel when expressed in trans. In contrast, the c.3629C > T variant caused a missense substitution of a proline with a leucine (p.P1210L) and produced a comparatively mild alteration of Cav3.2 channel activity. The newly identified ΔI153 variant is the first to be reported to cause a complete loss of Cav3.2 channel function. These findings add to the notion that loss-of-function of Cav3.2 channels associated with rare CACNA1H variants may be risk factors in the complex etiology of ALS.
- Klíčová slova
- ALS, Amyotrophic lateral sclerosis, Biophysics, CACNA1H, Calcium channel, Cav3.2 channel, Motor neuron disease, Mutation, T-type channel,
- MeSH
- amyotrofická laterální skleróza * genetika MeSH
- dominantní geny MeSH
- genetická predispozice k nemoci * MeSH
- genetické asociační studie * MeSH
- heterozygot MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mutace * genetika MeSH
- sekvence aminokyselin MeSH
- sekvenování celého genomu MeSH
- strukturní homologie proteinů MeSH
- vápníkové kanály - typ T * chemie genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CACNA1H protein, human MeSH Prohlížeč
- vápníkové kanály - typ T * MeSH
T-type channels are low-voltage-activated calcium channels that contribute to a variety of cellular and physiological functions, including neuronal excitability, hormone and neurotransmitter release as well as developmental aspects. Several human conditions including epilepsy, autism spectrum disorders, schizophrenia, motor neuron disorders and aldosteronism have been traced to variations in genes encoding T-type channels. In this short review, we present the genetics of T-type channels with an emphasis on structure-function relationships and associated channelopathies.
- Klíčová slova
- aldosteronism, amyotrophic lateral sclerosis, autism spectrum disorders, calcium channels, cav3 channels, channelopathies, epilepsy, mutation, schizophrenia, t-type channels,
- MeSH
- kanálopatie genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- vápníkové kanály genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vápníkové kanály MeSH