Nejvíce citovaný článek - PubMed ID 31185073
Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa
BACKGROUND AND AIMS: Reproductive isolation and local establishment are necessary for plant speciation. Polyploidy, the possession of more than two complete chromosome sets, creates a strong postzygotic reproductive barrier between diploid and tetraploid cytotypes. However, this barrier weakens between polyploids (e.g. tetraploids and hexaploids). Reproductive isolation may be enhanced by cytotype morphological and environmental differentiation. Moreover, morphological adaptations to local conditions contribute to plant establishment. However, the relative contributions of ploidy level and the environment to morphology have generally been neglected. Thus, the extent of morphological variation driven by ploidy level and the environment was modelled for diploid, tetraploid and hexaploid cytotypes of Campanula rotundifolia agg. Cytotype distribution was updated, and morphological and environmental differentiation was tested in the presence and absence of natural contact zones. METHODS: Cytotype distribution was assessed from 231 localities in Central Europe, including 48 localities with known chromosome counts, using flow cytometry. Differentiation in environmental niche and morphology was tested for cytotype pairs using discriminant analyses. A structural equation model was used to explore the synergies between cytotype, environment and morphology. KEY RESULTS: Tremendous discrepancies were revealed between the reported and detected cytotype distribution. Neither mixed-ploidy populations nor interploidy hybrids were detected in the contact zones. Diploids had the broadest environmental niche, while hexaploids had the smallest and specialized niche. Hexaploids and spatially isolated cytotype pairs differed morphologically, including allopatric tetraploids. While leaf and shoot morphology were influenced by environmental conditions and polyploidy, flower morphology depended exclusively on the cytotype. CONCLUSIONS: Reproductive isolation mechanisms vary between cytotypes. While diploids and polyploids are isolated postzygotically, the environmental niche shift is essential between higher polyploids. The impact of polyploidy and the environment on plant morphology implies the adaptive potential of polyploids, while the exclusive relationship between flower morphology and cytotype highlights the role of polyploidy in reproductive isolation.
- Klíčová slova
- Campanula rotundifolia agg, allopatry, contact zone, cytotype distribution, diploid, environmental niche shift, hexaploid, morphological differentiation, parapatry, polyploidy, reproductive isolation, tetraploid,
- MeSH
- Campanulaceae * MeSH
- diploidie MeSH
- ploidie MeSH
- polyploidie MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Success or failure of plants to cope with freezing temperatures can critically influence plant distribution and adaptation to new habitats. Especially in alpine environments, frost is a likely major selective force driving adaptation. In Arabidopsis arenosa (L.) Lawalrée, alpine populations have evolved independently in different mountain ranges, enabling studying mechanisms of acclimation and adaptation to alpine environments. We tested for heritable, parallel differentiation in freezing resistance, cold acclimation potential and ice management strategies using eight alpine and eight foothill populations. Plants from three European mountain ranges (Niedere Tauern, Făgăraș and Tatra Mountains) were grown from seeds of tetraploid populations in four common gardens, together with diploid populations from the Tatra Mountains. Freezing resistance was assessed using controlled freezing treatments and measuring effective quantum yield of photosystem II, and ice management strategies by infrared video thermography and cryomicroscopy. The alpine ecotype had a higher cold acclimation potential than the foothill ecotype, whereby this differentiation was more pronounced in tetraploid than diploid populations. However, no ecotypic differentiation was found in one region (Făgăraș), where the ancient lineage had a different evolutionary history. Upon freezing, an ice lens within a lacuna between the palisade and spongy parenchyma tissues was formed by separation of leaf tissues, a mechanism not previously reported for herbaceous species. The dynamic adjustment of freezing resistance to temperature conditions may be particularly important in alpine environments characterized by large temperature fluctuations. Furthermore, the formation of an extracellular ice lens may be a useful strategy to avoid tissue damage during freezing.
- Klíčová slova
- Adaptation, cold acclimation, freezing resistance, ice nucleation, parallel evolution, polyploidization,
- MeSH
- aklimatizace MeSH
- Arabidopsis * genetika MeSH
- ekosystém MeSH
- fotosystém II (proteinový komplex) MeSH
- led MeSH
- rostliny MeSH
- tetraploidie MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- led MeSH
Parallel adaptation provides valuable insight into the predictability of evolutionary change through replicated natural experiments. A steadily increasing number of studies have demonstrated genomic parallelism, yet the magnitude of this parallelism varies depending on whether populations, species, or genera are compared. This led us to hypothesize that the magnitude of genomic parallelism scales with genetic divergence between lineages, but whether this is the case and the underlying evolutionary processes remain unknown. Here, we resequenced seven parallel lineages of two Arabidopsis species, which repeatedly adapted to challenging alpine environments. By combining genome-wide divergence scans with model-based approaches, we detected a suite of 151 genes that show parallel signatures of positive selection associated with alpine colonization, involved in response to cold, high radiation, short season, herbivores, and pathogens. We complemented these parallel candidates with published gene lists from five additional alpine Brassicaceae and tested our hypothesis on a broad scale spanning ∼0.02 to 18 My of divergence. Indeed, we found quantitatively variable genomic parallelism whose extent significantly decreased with increasing divergence between the compared lineages. We further modeled parallel evolution over the Arabidopsis candidate genes and showed that a decreasing probability of repeated selection on the same standing or introgressed alleles drives the observed pattern of divergence-dependent parallelism. We therefore conclude that genetic divergence between populations, species, and genera, affecting the pool of shared variants, is an important factor in the predictability of genome evolution.
- Klíčová slova
- Arabidopsis, alpine adaptation, evolution, genomics, parallelism,
- MeSH
- anotace sekvence MeSH
- Arabidopsis klasifikace genetika metabolismus účinky záření MeSH
- biologická evoluce * MeSH
- býložravci fyziologie MeSH
- fyziologická adaptace genetika MeSH
- fyziologický stres MeSH
- genetická variace * MeSH
- genetický drift MeSH
- genom rostlinný * MeSH
- genová introgrese MeSH
- genová ontologie MeSH
- ionizující záření MeSH
- modely genetické MeSH
- nízká teplota MeSH
- rostlinné proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
BACKGROUND: Plant genomes can respond rapidly to environmental changes and transposable elements (TEs) arise as important drivers contributing to genome dynamics. Although some elements were reported to be induced by various abiotic or biotic factors, there is a lack of general understanding on how environment influences the activity and diversity of TEs. Here, we combined common garden experiment with short-read sequencing to investigate genomic abundance and expression of 2245 consensus TE sequences (containing retrotransposons and DNA transposons) in an alpine environment in Arabidopsis arenosa. To disentangle general trends from local differentiation, we leveraged four foothill-alpine population pairs from different mountain regions. Seeds of each of the eight populations were raised under four treatments that differed in temperature and irradiance, two factors varying with elevation. RNA-seq analysis was performed on leaves of young plants to test for the effect of elevation and subsequently of temperature and irradiance on expression of TE sequences. RESULTS: Genomic abundance of the 2245 consensus TE sequences varied greatly between the mountain regions in line with neutral divergence among the regions, representing distinct genetic lineages of A. arenosa. Accounting for intraspecific variation in abundance, we found consistent transcriptomic response for some TE sequences across the different pairs of foothill-alpine populations suggesting parallelism in TE expression. In particular expression of retrotransposon LTR Copia (e.g. Ivana and Ale clades) and LTR Gypsy (e.g. Athila and CRM clades) but also non-LTR LINE or DNA transposon TIR MuDR consistently varied with elevation of origin. TE sequences responding specifically to temperature and irradiance belonged to the same classes as well as additional TE clades containing potentially stress-responsive elements (e.g. LTR Copia Sire and Tar, LTR Gypsy Reina). CONCLUSIONS: Our study demonstrated that the A. arenosa genome harbours a considerable diversity of TE sequences whose abundance and expression response varies across its native range. Some TE clades may contain transcriptionally active elements responding to a natural environmental gradient. This may further contribute to genetic variation between populations and may ultimately provide new regulatory mechanisms to face environmental challenges.
- Klíčová slova
- Alpine environment, Arabidopsis arenosa, Common garden experiment, Parallelism, RNA-seq, Transposable elements,
- Publikační typ
- časopisecké články MeSH
Recurrent polyploid formation and weak reproductive barriers between independent polyploid lineages generate intricate species complexes with high diversity and reticulate evolutionary history. Uncovering the evolutionary processes that formed their present-day cytotypic and genetic structure is a challenging task. We studied the species complex of Cardamine pratensis, composed of diploid endemics in the European Mediterranean and diploid-polyploid lineages more widely distributed across Europe, focusing on the poorly understood variation in Central Europe. To elucidate the evolution of Central European populations we analyzed ploidy level and genome size variation, genetic patterns inferred from microsatellite markers and target enrichment of low-copy nuclear genes (Hyb-Seq), and environmental niche differentiation. We observed almost continuous variation in chromosome numbers and genome size in C. pratensis s.str., which is caused by the co-occurrence of euploid and dysploid cytotypes, along with aneuploids, and is likely accompanied by inter-cytotype mating. We inferred that the polyploid cytotypes of C. pratensis s.str. are both of single and multiple, spatially and temporally recurrent origins. The tetraploid Cardamine majovskyi evolved at least twice in different regions by autopolyploidy from diploid Cardamine matthioli. The extensive genome size and genetic variation of Cardamine rivularis reflects differentiation induced by the geographic isolation of disjunct populations, establishment of triploids of different origins, and hybridization with sympatric C. matthioli. Geographically structured genetic lineages identified in the species under study, which are also ecologically divergent, are interpreted as descendants from different source populations in multiple glacial refugia. The postglacial range expansion was accompanied by substantial genetic admixture between the lineages of C. pratensis s.str., which is reflected by diffuse borders in their contact zones. In conclusion, we identified an interplay of diverse processes that have driven the evolution of the species studied, including allopatric and ecological divergence, hybridization, multiple polyploid origins, and genetic reshuffling caused by Pleistocene climate-induced range dynamics.
- Klíčová slova
- Brassicaceae, environmental niche, genome size, hybridization, microsatellites, phylogeography, polyploidy, target enrichment,
- Publikační typ
- časopisecké články MeSH
The establishment and success of polyploids are thought to often be facilitated by ecological niche differentiation from diploids. Unfortunately, most studies compared diploids and polyploids, ignoring variation in ploidy level in polyploids. To fill this gap, we performed a large-scale study of 11,163 samples from 1,283 populations of the polyploid perennial geophyte Allium oleraceum with reported mixed-ploidy populations, revealed distribution ranges of cytotypes, assessed their niches and explored the pattern of niche change with increasing ploidy level. Altogether, six ploidy levels (3x-8x) were identified. The most common were pentaploids (53.6%) followed by hexaploids (22.7%) and tetraploids (21.6%). Higher cytotype diversity was found at lower latitudes than at higher latitudes (>52° N), where only tetraploids and pentaploids occurred. We detected 17.4% of mixed-ploidy populations, usually as a combination of two, rarely of three, cytotypes. The majority of mixed-ploidy populations were found in zones of sympatry of the participating cytotypes, suggesting they have arisen through migration (secondary contact zone). Using coarse-grained variables (climate, soil), we found evidence of both niche expansion and innovation in tetraploids related to triploids, whereas higher ploidy levels showed almost zero niche expansion, but a trend of increased niche unfilling of tetraploids. Niche unfilling in higher ploidy levels was caused by a contraction of niche envelopes toward lower continentality of the climate and resulted in a gradual decrease of niche breadth and a gradual shift in niche optima. Field-recorded data indicated wide habitat breadth of tetraploids and pentaploids, but also a pattern of increasing synanthropy in higher ploidy levels. Wide niche breadth of tetra- and pentaploids might be related to their multiple origins from different environmental conditions, higher "age", and retained sexuality, which likely preserve their adaptive potential. In contrast, other cytotypes with narrower niches are mostly asexual, probably originating from a limited range of contrasting environments. Persistence of local ploidy mixtures could be enabled by the perenniality of A. oleraceum and its prevalence of vegetative reproduction, facilitating the establishment and decreasing exclusion of minority cytotype due to its reproductive costs. Vegetative reproduction might also significantly accelerate colonization of new areas, including recolonization of previously glaciated areas.
- Klíčová slova
- chromosome numbers, cytogeography, ecological niche, flow cytometry, geophytes, ploidy coexistence, polyploidy,
- Publikační typ
- časopisecké články MeSH
Parallel evolution provides powerful natural experiments for studying repeatability of evolution and genomic basis of adaptation. Well-documented examples from plants are, however, still rare, as are inquiries of mechanisms driving convergence in some traits while divergence in others. Arabidopsis arenosa, a predominantly foothill species with scattered morphologically distinct alpine occurrences is a promising candidate. Yet, the hypothesis of parallelism remained untested. We sampled foothill and alpine populations in all regions known to harbor the alpine ecotype and used SNP genotyping to test for repeated alpine colonization. Then, we combined field surveys and a common garden experiment to quantify phenotypic parallelism. Genetic clustering by region but not elevation and coalescent simulations demonstrated parallel origin of alpine ecotype in four mountain regions. Alpine populations exhibited parallelism in height and floral traits which persisted after two generations in cultivation. In contrast, leaf traits were distinctive only in certain region(s), reflecting a mixture of plasticity and genetically determined non-parallelism. We demonstrate varying degrees and causes of parallelism and non-parallelism across populations and traits within a plant species. Parallel divergence along a sharp elevation gradient makes A. arenosa a promising candidate for studying genomic basis of adaptation.
- Klíčová slova
- Arabidopsis, adaptation, alpine environments, convergence, parallel evolution, phenotypic parallelism,
- Publikační typ
- časopisecké články MeSH